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ABSTRACT 
Patterns of water flow paths and time scales are important for nearly all environmental 

processes within in the Critical Zone.  To better understand these hydrological processes, a water 

stable isotope network was established at the Susquehanna-Shale Hills Critical Zone Observatory 

to determine spatial and temporal dynamics of the hydrologic pools (precipitation, soil water, 

groundwater, and stream water) within the catchment.  Precipitation samples were collected 

automatically on an event basis in a clearing at the ridge top.  Soil water was collected every two 

weeks from four distinct transects at varying depths using suction cup lysimeters.  Groundwater at 

two locations in the stream riparian and stream water at the outlet were collected daily using 

automatic samplers.  Groundwater was also sampled every two weeks at 18 spatially distributed 

wells throughout the catchment.  Isotopic analysis was performed using LGR Isotope Analyzer 

following IAEA guidelines.  Results demonstrated the strong seasonality of precipitation isotope 

compositions and relative stationarity of groundwater isotopic compositions around the annual 

amount weighted isotope composition of precipitation suggesting groundwater is recharged by 

precipitation from each season, but that recharge mechanisms appear to differ during the year.  

Results strongly demonstrate the ability of the soil profile to attenuate the seasonal isotopic 

composition of the input to a constant composition at a depth of 1.5 m suggesting the importance 

of hydrodynamic mixing of precipitation from different seasons.  Spatial patterns of soil water 

isotope profiles showed asymmetric snow melt dynamics between the north and south slopes.  

Investigations of standard deviations of seasonal isotope profiles provided evidence of lateral 

preferential flow along soil horizon and soil-bedrock interfaces during the cold season and 

vertically through macropores during the warm season.  

Investigation of the temporal dynamics of isotopic composition of precipitation yielded 

interesting results with respect to the influence of precipitation amounts and type on expected 

frequencies as well as the local meteoric water line.   A test case of a small subset of the 

precipitation record showed that incorporation of precipitation amounts to one-dimensional and 

two-dimensional kernel density estimates shifted the distribution substantially.  Full record 

unweighted and weighted kernel density estimates revealed that isotope compositions of 

precipitation were not symmetrical but skewed towards more depleted values for the four year 

monitoring period.  Monthly weighted kernel density estimates showed the importance of snow 



iv 

and tropical storm isotopic composition imposing a seasonal variation to the precipitation record.  

Time integration of precipitation isotope compositions using an amount weighing procedure 

from event to seasonally amount weighted isotope compositions reduced the variability within the 

record yet preserved the seasonal cycle.  Construction of local meteoric water lines using event, 

daily, weekly, monthly, and seasonally amount weighted isotope composition time series 

demonstrated the significance of incorporation of precipitation amounts and averaging, with 

event and daily local meteoric water lines being statistically different from a local meteoric water 

line based on a precipitation amount weighted least squares regression.  These differences in local 

meteoric water lines become important when investigations of hydrologic pool interactions or 

other moderate to long-term hydrologic processes are in question. 

Utilizing the knowledge of earlier investigations, a robust comparison of two isotope 

incorporated atmospheric general circulation models against SSHCZO observations was 

performed with the goal of developing a fully distributed high-resolution data product predicting 

isotope compositions of precipitation for the Chesapeake Bay.  Comparisons were performed on 

daily, weekly, and monthly amount weighted values as well as monthly values from the Online 

Isotopes in Precipitation Calculator.  Linear regression results showed the best agreement 

between the monthly amount weighted values yet Nashe-Sutcliffe coefficients were only 0.2807 

and 0.5792 for the global GCM and regional GCM respectively.  To determine the temporal 

structure of the time series, singular spectrum analysis (SSA) was performed on both GCM 

models and observations from SSHCZO.  SSA results demonstrated the importance of the 

annual cycle and its harmonics.  Reconstruction of weekly amount weighted isotope compositions 

for the regional model and SSHCZO recovered 43.44% and 51.78% amounts of the variance 

respectively suggesting much of the records contain inherent noise. 
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Chapter 1.  

Introduction  

1.1. Background 

Nearly all terrestrial life on the planet depends on the ecosystem services provided by the 

Critical Zone, a dynamic system of earth’s near surface acting as the nexus of the pedosphere, 

atmosphere, biosphere, and hydrosphere (Brantley et al., 2007; Anderson et al., 2008).  

Unfortunately, anthropogenic forces are now applying significant stresses and pressures around 

the global, generating an urgent need for a better understanding of this complex system (National 

Research Council, 2001).  Further complicating the scenario, the dynamics of Critical Zone exist 

over a large range of spatial and temporal scales, from tectonic activity, chemical weathering and 

drainage network development over large regions taking millennia to fluid transport and ion 

exchange in soil pore spaces acting on the order of seconds or microseconds.  Often associated 

with these processes are feedbacks and process interactions, which can be difficult to understand 

without interdisciplinary efforts.  Progress has been made by various disciplines including soil 

scientists (Wilding and Lin, 2006), hydrologists (Kirchner, 2003; Lin et al., 2006a; McDonnell et 

al., 2007), geochemists (Anderson et al., 2007), and ecologists (Brooks et al., 2009) on various 

processes yet further work is required to fully understand the complexities of the Critical Zone. 

In 2006, the Susquehanna-Shale Hills Critical Zone Observatory (SSHCZO) was 

established to further the understanding of Critical Zone processes and to ultimately understand 

regolith formation, evolution and function including hydrologic flow paths and timescales 

(Brantley et al., 2007; Anderson et al., 2008).  SSHCZO provided an excellent opportunity to 

further environmental research due to its proximity to the Penn State campus and because of the 

previous hydrologic work accomplished at the site (Nutter, 1964; Lynch, 1976; Duffy, 1996).  

Located in the Ridge and Valley Physiographic Province of eastern United States, SSHCZO has 

the added benefit of being a classic headwater basin of the Chesapeake Bay watershed (Figure 

1-1), with work potentially contributing to the Chesapeake Bay Program and other related 

projects. 
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Figure 1-1: Location of Susquehanna-Shale Hills Critical Zone Observatory in relation to the 
Chesapeake Bay watershed. 

 

Numerous hydrologic studies at the catchment allowed researchers to build off previous 

findings (Nutter, 1964; Lynch, 1976; Duffy, 1996).  Early work established the importance of 

antecedent soil moisture to quickflow and total storm runoff (Lynch, 1976).  More recent works 

have made substantial progress with respect to soil moisture dynamics (Lin, 2006; Lin et al., 

2006b), preferential flow pathways (Lin and Zhou, 2008; Graham and Lin, 2011), and solute 

transport (Jin et al., 2010, 2011; Andrews et al., 2011; Kuntz et al., 2011; Jin and Brantley, 2011).  

Additionally extensive distributed hydrologic modeling using the Penn State Integrated 

Hydrologic Model (PIHM) has successfully detailed the importance of antecedent soil moisture, 
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topographic controls of connectivity, saturated/unsaturated storage dynamics, and isotopic age 

distributions (Duffy, 1996; Qu and Duffy, 2007; Bhatt, 2012). 

To better grasp the driver of many complex environmental processes, research has focused 

on development of a conceptual hydrologic model.  Jin et al. (2011) used water stable isotopes 

and Magnesium concentrations on one planar hillslope in SSHCZO to better understand surface 

and subsurface hydrologic processes.  Their findings suggest the prevalence of three types of 

water: low flow waters in the A and B horizons with high Mg concentrations, high flow waters 

with low Mg concentrations, and groundwater with high Mg concentrations.  They also found 

residence times within the catchment were relatively short, typically less than one year.  The work 

of Holmes (2011) further refined the estimates of residences times within SSCHZO by using a 

piecewise constant input isotopic age model.  His findings suggest the mean age of the water in 

the catchment reached a peak of 9 months during the summer drought and a minimum of 4.5 

months during the winter with an average of 5-6 months.  Bhatt (2012) further refined the 

estimates of isotopic age at SSHCZO by using a spatially distributed, multi-process numerically 

based model equipped with transport equations.  His results showed the space-time average 

isotopic age for the catchment was 217 days or 7.2 months and varied from 85 days to 347 days.  

His estimates correspond to an age for the integrated depth of water over all grid cells in the 

catchment.  All results of the previous studies demonstrate the transient nature and complexity of 

hydrology at SSHCZO.  

1.2. Water Stable Isotope Overview 

One promising tool at SSHCZO is the use of stable isotopes of water (oxygen-18 and 

deuterium (2H)) as natural tracers to determine water flowpaths and hydrologic process 

timescales.  Because stable isotopes move with the water molecule itself, they allow for 

nondestructive, long-term monitoring of subsurface hydrologic processes (Vanclooster et al., 

2005; Leibundgut et al., 2009).  Over the past decades, water stable isotopes have been used 

successfully to determine groundwater recharge rates (Gat, 1971; Darling and Bath, 1988; 

Davisson and Criss, 1993; Criss and Davisson, 1996; Winograd et al., 1998), hydrograph 

separation (Sklash et al., 1976; Sklash and Farvolden, 1979; Pearce et al., 1986; Rice and 

Hornberger, 1998), preferential flow paths (McDonnell, 1990; Leaney et al., 1993; Kirchner, 

2003; Vogel et al., 2010), soil water evaporation (Zimmermann et al., 1968; Barnes and Allison, 
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1983, 1988; Gazis and Feng, 2004), and sources of transpired water (Dawson and Ehleringer, 

1991; Ehleringer and Dawson, 1992; Brooks et al., 2009; Gierke, 2012). 

Stable isotope hydrology dates back nearly 80 years with the discovery of seawater being 

isotopically heavier than fresh waters (Gilfillan, 1934).  Unfortunately, soon after this discovery, 

World War II forced researchers to devote efforts towards more defense-minded endeavors, 

including the development of mass spectrometry.  After the war, researchers equipped with these 

new laboratory methods began to analyze natural abundances of oxygen-18 and deuterium in 

meteoric waters around the globe and started to explain the underlying physics controlling the 

abundances (Epstein and Mayeda, 1953; Friedman, 1953; Dansgaard, 1954).  Efforts to 

summarize and standardize global results (Craig, 1961a; b) laid the framework for future isotopic 

studies by formally establishing a linear relationship between concentrations of oxygen-18 and 

deuterium and defining a standard for use globally.  In 1961, Craig was the first to propose 

development of Standard Mean Ocean Water (SMOW) which then allowed samples to be 

compared against each other (Craig, 1961a), simplifying analysis and promoting world wide 

investigation of isotope hydrometeorology.  Standard isotope notation follows the form: 

   !!(!"#$%&) =
!!

!!"#$
− 1   ×  1000   (1)  

where R is the ratio of deuterium (2H) to hydrogen (H) or 18O to 16O in the standard (X) or 

Standard Mean Ocean Water (SMOW).  Delta values are multiplied by 1000 for convenient 

comparisons of samples.  Over time SMOW has undergone revisions to more precisely establish a 

world wide standard for isotopic composition of ocean water, the most recent revision occurring 

in 2009 with the development of V-SMOW2 or Vienna Standard Mean Ocean Water 2 

(International Atomic Engery Agency, 2009).  

The International Atomic Energy Association (IAEA) was also influential in the 

coordination of an observation network intended to monitor oxygen-18, deuterium, and tritium 

concentration spatial and temporal patterns across the globe.  In 1964, Dansgaard thoroughly 

detailed the preliminary results of the IAEA’s network and outlined the geochemical processes 

governing them (Dansgaard, 1964).  He found empirical relationships relating precipitation 

isotope compositions to physical and environmental parameters such as surface temperatures, 

latitude, distance from coast, and amounts of precipitation.  Later studies supported his findings 

(Gat and Gonfiantini, 1981; Rozanski et al., 1993).  The empirical relationships can be thought 

of as representing the degree of rainout and associated isotopic depletion as the air mass is 
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transported from its source area to the site of precipitation.  That is to say, the isotopic 

composition of precipitation contains information regarding the history of a given air mass and 

the associated atmospheric circulation patterns.  The isotopic composition of precipitation is 

controlled by the interaction of four main factors: the meteorological (e.g. temperature, humidity) 

conditions at the source area, the fraction of available moisture, snow formation or evaporation of 

liquid from falling droplet, and mixing of different air masses (Gat, 1996; Araguás-Araguás et al., 

2000).  Much of these factors may vary seasonally leading to seasonal variation in isotopic 

compositions for a given site. 

Deuterium and oxygen-18 compositions of precipitation have been found to vary linearly at 

the global (Craig, 1961b; Rozanski et al., 1993; Araguás-Araguás et al., 2000) and regional scales 

(Fritz et al., 1987; IAEA, 1992).  Refining Craig's (1961b) initial estimate of the Global 

Meteoric Water Line (GMWL: !" = 8  δ!"O + 10  ‰), Rozanski et al. (1993) found the 

GMWL based on long term amount weighted means of 205 observation points to be: 

   !" = 8.17   ±0.07   δ!"O + 11.27   ±0.65   ‰   (2)  
The GMWL can be though of as a composite of many local meteoric water lines (LMWL) from 

different locations or regions.  Deviations from the GMWL are due to evaporative processes 

which influence the d-excess value (d-excess = !" −   8  δ!"O, originally defined by Dansgaard 

(1964)), and is commonly found in arid or semi-arid environments.  Typically LMWLs for arid 

or semi-arid regions have slopes less than 8.  Slopes larger than 8 are possible in locations where 

depleted precipitation values fall below the GMWL and relatively enriched precipitation has high 

d-excess values.  Locations with large LMWL slopes typically have two or more distinct sources 

of precipitation (Araguás-Araguás et al., 2000).   

1.3. Geospatial Data and Surveying at SSHCZO 

Concurrently with much of the isotope hydrology studies performed over the past two year, 

substantial progress was made surveying and mapping instrumentation at SSHCZO.  Because of 

the scope and complexity of SSHCZO, instrumentation is continually being installed, and thus 

surveying is required to precisely map relative locations within the catchment.  To expedite all 

future survey efforts, semi-permanent control points were installed and marked throughout the 

catchment based off permanent monuments installed by a professional surveyor in the summer of 

2011.  Control points consist of 0.75 inch diameter rebar emplaced in the soil with approximately 
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2 inches of rebar exposed at each control point to allow for removal if desired.  These additional 

control points now accelerate surveyors ability to quickly setup and gather coordinate data as well 

as check accuracy in the field.   

1.4. Research Objectives and Efforts 

There are two general objectives of this thesis: 1) building a robust understanding of water 

stable isotopes at the SSHCZO and 2) developing a high-resolution dataset of isotopes in 

precipitation for future implementation into the Penn State Integrated Hydrologic Model 

(PIHM) and HydroTerre.  Ideally, with the knowledge gained through work on the first 

objective, an improved data product will be developed for the second objective.  

Chapter 2 partially addresses the first objective through in-depth investigation of the 

spatiotemporal patterns of soil water isotope compositions at SSHCZO.  The motivation behind 

investigating soil water isotope compositions was to to improve our understanding of subsurface 

hydrologic processes and supplement the overall conceptual hydrologic model.  The relationship 

between soil water, precipitation, and groundwater isotope compositions is also discussed briefly 

in the second chapter.  Chapter 3 continues to addresses the first general objective of building a 

robust understanding of water stable isotopes at SSHCZO by more closely examining temporal 

patterns of precipitation stable isotope compositions.  The results from this work are intended to 

support the development of the data product in Chapter 4 as well as to support any future isotope 

hydrology studies at SSHCZO or nearby sites. 

The second main objective was addressed in Chapter 4.  Knowledge from the previous 

chapters was applied to the comparison of observed isotopic composition of SSHCZO 

precipitation to two related isotope-incorporated atmospheric general circulation models.  It is 

intended that with a valid comparison, the results from one isotope-incorporated atmospheric 

general circulation models would suffice as the initial data product for isotopes in precipitation for 

the Chesapeake Bay watershed.  The comparison was performed using standard regressions and 

singular spectrum analysis.  With the results of the comparison, a 32-year record of isotopes in 

precipitation was established for SSHCZO.  Future work includes validation of the isotope 

incorporated atmospheric general circulation model at other spatial locations and the 

development of a usable data layer for PIHM implementation. 
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Chapter 2.  

Spatiotemporal Patterns of Stable Isotope Compositions at the 
Shale Hills Critical Zone Observatory: Linkages to Subsurface 
Hydrologic Processes 

This chapter has been submitted in similar form to the Vadose Zone Journal, with co-authors H. 
Lin, C. Duffy, P. Sullivan, G. Holmes, S. Brantley, and L. Jin. 

2.1. Abstract 

To better understand flow pathways and patterns in the subsurface, a stable isotope 

monitoring network was established at the Shale Hills Critical Zone Observatory.  Soil water 

samples were collected approximately bi-weekly using suction-cup lysimeters installed at multiple 

depths along four different transects in the catchment. Groundwater and stream water were 

collected daily using automatic samplers, while precipitation samples were collected automatically 

on an event basis.  Our over 3-year (2008-2012) monitoring data showed strong seasonal 

precipitation isotope composition, which was imprinted in seasonal patterns of various hydrologic 

pools.  The groundwater isotope composition remained relatively constant throughout the year 

and closely matched the yearly amount-weighted precipitation average, suggesting groundwater 

received recharge water in each season, although recharge mechanisms differed between growing 

and non-growing seasons.  Soil water samples showed strong seasonal trends in isotopic 

composition and clear attenuation with depth, with the variation in shallow soil water closely 

mirroring precipitation inputs, while deep soil water matched the groundwater average.  Spatial 

patterns showed that snowmelt infiltrated the A-Horizon on the northern slope but sublimated 

from the southern slope.  Soil water isotope composition profiles provided evidence for 

preferential flow occurring laterally and vertically at various points and times in the catchment. 

2.2. Introduction 

Knowledge of subsurface flowpaths and timescales is essential to the understanding of soil 

formation and hydrologic processes in the Critical Zone.  Soil water plays an essential role by 

transporting major constituents important for terrestrial ecosystem services including carbon, 
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nitrogen, and other nutrients, chemical weathering products, sediments, and possible 

contaminants.  Furthermore, soil water acts as the linkage between precipitation and 

groundwater, facilitating recharge and dictating when subsurface flow occurs.  As anthropogenic 

forces continue to stress the environment, it becomes more important to understand this linkage 

and transport processes within the vadose zone.  Stable isotopes of water provide an important 

environmental tracer for understanding vadose zone hydrology, groundwater recharge, mixing 

processes, stream flow generation, subsurface storage, and catchment yield (Vanclooster et al., 

2005; Leibundgut et al., 2009). 

Water stable isotopes (deuterium and oxygen-18) allow for nondestructive, long term 

monitoring of subsurface hydrology.  Stable isotopes have been used to determine groundwater 

composition and recharge rates (Gat, 1971; Darling and Bath, 1988; Davisson and Criss, 1993; 

Criss and Davisson, 1996; Winograd et al., 1998), preferential flow pathways and the old water-

new water paradox (McDonnell, 1990; Leaney et al., 1993; Kirchner, 2003; Vogel et al., 2010), 

soil water evaporation (Zimmermann et al., 1968; Barnes and Allison, 1983, 1988; Gazis and 

Feng, 2004), hydrograph separation (Sklash et al., 1976; Sklash and Farvolden, 1979; Rice and 

Hornberger, 1998), and tree water source (Ehleringer and Dawson, 1992; Brooks et al., 2009; 

Gierke, 2012). 

The Susquehanna-Shale Hills Critical Zone Observatory (SSHCZO) was established in 

2007 in order to determine regolith formation and evolution as well as hydrologic flowpaths and 

timescales within a small, forested catchment.  To date, many successful studies have identified 

the importance of hydrological processes including soil moisture dynamics (Lin, 2006; Lin et al., 

2006b; Lin and Zhou, 2008), solute transport (Jin et al., 2010, 2011; Andrews et al., 2011; Kuntz 

et al., 2011), and stream flow generation mechanisms (Lynch, 1976; Duffy, 1996).  Additionally, 

water stable isotopes have been used along with other chemical tracers to conceptualize 

catchment hydrology (Holmes, 2011; Jin et al., 2011).  Jin et al. (2011) used variations in Mg 

concentrations and water stable isotopes to identify three types of water storage within the south 

planar hillslope of the SSHCZO: low-flow waters where chemical dissolution occurs, high-flow 

waters where residence times are low, and groundwater storage in fractured shale bedrock.  Their 

findings indicate typically low-flow waters are stored within soil matrix, high-flow waters are 

found at interfaces of low permeability, and groundwater is found continually in the valley floor.  
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In addition, Jin et al. used the water isotopes to estimate that residence times of waters in the 

catchment are less than a year, indicating the fast nature of draining of the hillslopes.   

Preferential flow pathways have been found to be prominent in the catchment (Lin, 2006; 

Lin and Zhou, 2008; Graham and Lin, 2011; Jin et al., 2011).  Analysis of 175 precipitation 

events over three years by Graham and Lin (2011) showed that preferential flow occurred during 

at least 90% of the events. While these studies have successfully conceptualized the subsurface 

hydrology at the SSHCZO, water isotopes have not yet been used to investigate the temporal and 

spatial patterns of subsurface hydrologic processes across the catchment. 

The goal of this study is to determine the spatial and temporal drivers of subsurface 

hydrology utilizing high frequency sampling of water stable isotopes.  Specifically, we will 

examine the influence of hillslope orientation, slope location, landform type, and soil depth on 

soil water isotope compositions to determine water flowpaths associated with specific soil or 

landscape features.   We aim to improve the understanding of temporal patterns of water isotope 

compositions involving: seasonal differences (growing vs. non-growing), snowmelt dynamics, and 

periods of water scarcity.  Finally, this study will help improve the understanding of mechanisms 

involved in controlling spatiotemporal patterns of soil water isotope composition, growing season 

evaporation patterns, and subsurface preferential flow. 

2.3. Methods & Materials 

2.3.1. Site Description 

2.3.1.1. Landform and Vegetation 

The SSHCZO, a 7.9-ha forested catchment located in central Pennsylvania, is characteristic 

of the Ridge and Valley Physiographic Province of eastern United States.  The V-shaped, 

headwater catchment is oriented east-west and contains an intermittent 1st order stream that 

typically flows from late September to early June.  The SSHCZO lies within the Shavers Creek 

watershed of the Juniata River, which in turn is a sub-basin of the Susquehanna River.  Slopes 

within the catchment are considered moderate and range from 25-48%, with elevation varying 

from 310 m at the ridge top to 256 m at the stream outlet (Lin, 2006).  The strike and dip of the 

underlying shale bedrock are approximately N54°E and 76°NW, respectively, as measured in the 
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northern ridge top (Jin et al., 2010) but shallower dip has been measured near the valley floor 

(Kuntz et al., 2011). 

There are four distinct landform units within the catchment: north (south-facing) slope with 

deciduous forest and underbrush, south (north-facing) slope with deciduous forest and thicker 

underbrush, valley floor with evergreen (hemlock) trees along the western side and deciduous 

oak-hickory forest on the eastern side, and topographic depressional areas (swales) with deciduous 

forest cover and deeper soils.  There are seven swales distributed over the catchment, with five on 

the north slope and two on the south slope, each separated by near-planar slopes.  The catchment 

was clear-cut approximately 60 years ago and the current mature forest is composed of deciduous 

trees on the slopes and ridges (Maple [Acer spp.], Oak [Quercus spp.], and Hickory [Carya spp.]) 

and eastern hemlock conifers on the valley floor (Tsuga Canadensis [L. Carriere]).  

2.3.1.2. Soils 

The soil survey shows that soils in this catchment were formed from shale residuum or 

colluvium and contain many channery shale fragments throughout most of the soil profiles (Lin 

et al., 2006b).  Hillslope soils have silt loam texture in general, moderately developed soil 

structure, and are generally well drained.  In the valley floor, there are redoximorphic features 

starting to appear at 30-60 cm in soil profiles.  Throughout the catchment there is about 0.05 m 

thick organic layer (Oe-horizon) (Lin et al., 2006b).  There are five distinct soil series that are 

distinguished based on depth to bedrock, landform unit, and drainage condition (Figure 2-1).  

The Weikert series is the most prevalent soil type (loamy-skeletal, mixed, active, mesic Lithic 

Dystrudepts) and is generally < 0.5 m thick to bedrock.  The Berks soil series (loamy-skeletal, 

mixed, active, mesic Typic Dystrudepts) is 0.5-1 m thick to bedrock.  The Rushtown series 

(loam-skeletal over fragmental, mixed, mesic Typic Dystrochrepts) is located in the center of 

swales as well as in the eastern end of the catchment and is >1 m thick to bedrock.  Soil series 

located on the valley floor are distinguished by fragipan-like layer and depth to redox features.  

The Ernest series (fine-loamy, mixed, superactive, mesic, Aquic Fragiudults) occupies the 

majority of the streambed and contains redox features starting at 0.3-0.5 m.  The Blairton series 

(fine-loamy, mixed, active, mesic Aquic Hapludults) is of minor extent and contains redox 

features at > 0.6 m depth.  Further information regarding the soil survey and features can be 

found in Lin et al. (2006).  Specific soil characteristics, weathering reactions, soil chemistry and 
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mineralogy have been previously reported for the locations of the lysimeter nests described herein 

(Jin et al., 2010; Jin and Brantley, 2011). 

 
Figure 2-1: Topographic map of Susquehanna-Shale Hills Critical Zone Observatory with stable 
isotope monitoring instruments.  Colors indicate soil type based on field observations (Lin et al., 
2006).  Ten-minute precipitation amounts and event-based water samples were collected at the 
ridge top clearing (grey box) for isotope analysis.  Soil water was collected bi-weekly at four 
nested lysimeter transects (orange circles) as described by Jin et al., (2011).  Two unscreened 
groundwater wells were installed in the stream riparian zone to observe daily evolution of isotope 
composition (dark blue triangles). Depth to groundwater table was monitored in real-time in the 
stream riparian zone (teal triangle).  Stream discharge and isotope composition values were 
monitored daily at the double V-notch weir located at the stream outlet (red triangle). 

2.3.1.3. Climate 

The SSHCZO is located in a humid climate where the long-term average precipitation of 

1,006 mm is approximately evenly distributed throughout the year. Mean annual temperature is 

10.1°C.  Summers are typically hot and humid with temperatures >30°C and precipitation events 

consisting of short, high-intensity storms.  Winters are typically wet and cold with temperatures 



 

12 

less than -10°C and precipitation events consisting predominantly of snow (based on a 30-year 

record, NOAA, 2007).  

2.3.2. Data Collection 

2.3.2.1. Hydrologic Monitoring 

Meteorological data were collected in a small clearing area at the ridge top of the catchment 

from 2009-2012.  Precipitation was monitored using an Ott-Pluvio weighing bucket (Hach 

Company, Loveland, CO) in ten-minute intervals with a precision of 0.1 mm and Laser 

Precipitation Monitor (LPM, Thies Clima, Göttingen, Germany) in ten-minute intervals with 

precision of 0.01 mm. The LPM is capable of determining the type of precipitation (e.g., drizzle, 

rain, snow, or hail) based on the size and velocity of the precipitation.  Data were collected and 

transmitted on-line in real time and processed annually for missing data.  Missing data were filled 

directly using 16 tipping-bucket rain gages with HOBO recorders (Davis Instruments Corp., 

Hayward, CA) located throughout the catchment and the LPM.  The tipping-buckets record 

rainfall at a height of 0.3 m with a precision of 0.2 mm.  Because the tipping buckets were 

typically located under the canopy and only collected throughfall, these data were used only when 

necessary.  

A double V-notch weir located at the outlet of the stream was used to monitor stream 

discharge accurately during high and low flows.  Water depths were recorded in one-minute 

intervals, integrated to daily values and converted to discharge using a rating curve developed by 

Nutter (1964).  Depth to groundwater was monitored at one well in the stream riparian zone 

from Jan. 2009 to Dec. 2011 in ten-minute intervals using Druck pressure transducers (Campbell 

Scientific Inc., Logan, UT) (Figure 2-1).   

2.3.2.2. Stable Isotope Monitoring 

From Jun. 13, 2008 to Mar. 16, 2012, a total of 4,460 unfiltered water samples were 

collected over the entire catchment to determine the isotopic composition of various hydrologic 

pools and their linkages.  Precipitation samples were collected Jan. 14, 2009 to Feb. 12, 2012 on 

an event basis using an automatic precipitation sampler (model: NSA 181/S, Eigenbrodt GmbH 

& Co., Königsmoor, Germany) located in the clearing area on the ridge top (Figure 2-1).  To 

capture intra-storm variability, precipitation was collected for the first 30-minutes of a storm 
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followed by three 6-hour intervals.  Precipitation amount and isotope composition were assumed 

to be consistent over the entire catchment.  Previous studies in central Pennsylvania have shown 

that one rain gage per 12.6 km2 is suitable to resolve spatial variability of precipitation (Reich, 

1966; O’Driscoll et al., 2005).   As isotopic enrichment of summer precipitation associated with 
throughfall (0.11‰ and 2.9‰ for δ18O and δD, respectively Pearce et al., 1986)  is similar to 

analytical precision; thus the isotopic composition of throughfall was assumed to be equal to the 

composition of the sampled precipitation.  

Daily stream water and groundwater samples were collected using automatic samplers (2700 

series, Teledyne Isco, Lincoln, NE). Stream water was sampled directly upstream of the weir 

from Mar. 2009 to Mar. 2012.  Groundwater was collected from Mar. 2009 to Mar. 2012 at two 

screened wells (approximately 3 m deep), located in the stream riparian zone (shown in Figure 

2-1).  

As reported originally by Jin et al., (2011) soil water samples were collected approximately 

every two weeks from four transects of nested suction-cup lysimeters (48 mm diameter, 

SoilMoisture 1900 series, Soil Moisture Inc., Santa Barbara, CA) emplaced in 2006 (Figure 2-1 

and Table 2-1).  Jin et al., (2011) only report samples from the south planar hillslope of the 

catchment collected from 2006 to 2010. That same dataset is extended here through 2011 and 

includes samples from the north side of the catchment and swale transects. Soil water sampling 

was often limited during the summer (Jun.-Sep.) due to low soil water content and in the winter 

(December-March) due to frozen soil matrix and snow cover.  Soil water samples were collected 

according to established USGS protocols (White et al., 2005) as described previously by Jin et al., 

(2011).  Lysimeters were suctioned to 50 kPa one week prior to sampling and thus only collected 

mobile water within the soil matrix.  The four transects of lysimeters were located along a swale 

and a planar hillslope each along the south and north slopes (Jin et al., 2010, 2011).  Each 

transect contained lysimeter nests at three locations along the topographic gradient: ridge top, 

midslope, and valley floor.  The midslope and valley floor of swales were dominated by Rushtown 

soils while ridge tops and planar slopes were dominated by Weikert soils (Figure 2-1) (for soil 

chemistry and mineralogy see Jin et al. (2010) and Jin and Brantley (2011).  Each nest consisted 

of 3 to 13 lysimeters (depending on soil thickness) installed at 10 cm interval depths and spaced 

10 cm apart (Table 2-1). The first lysimeter was installed at a depth of 10 cm with subsequent 

lysimeters added until the point of augering refusal.   
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Table 2-1: Installed suction cup lysimeter depths and corresponding soil horizons for Transects 
1-3, based on in situ observations (Lin, 2006).  The soil horizons for Transect 4 were identified 
by Jin et al., (2010).  Organic Oe-horizon covers the upper ~5 cm of the entire catchment.  
Lysimeters located in the A-Horizon are colored green, B-Horizon yellow, C-Horizon red, and 
in bedrock (R) brown.  Locations with two lysimeters are labeled A and B after lysimeter depth. 

 
 

All liquid water samples were collected and stored in 30 mL amber glass vials with cone-

lined caps to prevent evaporation.  Sample bottles contained little or no headspace to minimize 

water-air exchange. Water samples were analyzed using laser absorption spectrometer (DT-100 

Liquid Water Isotope Analyzer, Los Gatos Research, Inc., Mountain View, CA) following the 

IAEA Standard Operating Procedure (Newman et al., 2008).  The analytical precision of the 

instrument is 0.1‰ and 0.8‰ for oxygen-18 and deuterium, respectively (Lis et al., 2008).  The 
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isotopic composition of the water was reported as a δ-value relative to Vienna Standard Mean 

Ocean Water (VSMOW): 

   !!(!"#$%&) =
!!

!!"#$%
− 1   ×  1000   (1)  

where R is the ratio of deuterium to hydrogen or 18O to 16O in the unknown (X) or VSMOW. 

2.3.3. Data Analysis 

To determine the isotope composition of precipitation for a given time period, the mean 

precipitation isotope composition was weighted by volume of precipitation and calculated using 

the following equation: 

   !! =
!!!!!

!!!
!!!

!!!
   (2)  

where δT is the amount-weighted precipitation value, Pi represents the amount (depth) of 

precipitation in an event, δi is the isotope composition of an event, and n is the number of events 

in the time period considered.  To determine temporal variations in isotope compositions and to 

account for the moderate sampling frequency of lysimeters, samples were averaged into four 

seasons: spring, summer, fall, and winter.  Seasons were defined based on the astronomical 

calendar rather than the meteorological calendar in order to more closely align with the growing 

season of the vegetation in the catchment.  For example, the spring season begins on the Spring 

Equinox and ends on the Summer Solstice, dates which vary from year to year.  The growing 

season was defined as the combination of spring and summer while the non-growing season was 

defined as the combination of fall and winter.  This seasonal naming convention remains 

consistent throughout the study.   

Violin plots (Hintze and Nelson, 1998) of the smoothed kernel density distributions were 

used to examine the isotopic distribution of seasonal precipitation inputs as well as the other 

hydrologic pools (soil, stream, and groundwater).  The size of the violin plot was normalized so 

the area of each plot was equal to one.  For precipitation violin plots, amount-weighted 

concentrations were calculated as well as two weighted standard deviations.  Observations were 

offset along the x-axis to allow for visualization.  For the violin plots of various hydrologic pools, 

standard box and whisker plots were created.  Boxes correspond to the inner-quartile and 

whiskers correspond to 1.5 of inner-quartile range.  Violin plots of soil water were binned into 



 

16 

three groups: shallow soil water (≤30 cm depth), intermediate soil water (40-100 cm depth), and 

deep soil water (≥120 cm depth).  This was intended to facilitate the investigation of general soil 

water isotope composition patterns with respect to depth throughout the entire catchment.   

To determine the temporal evolution of soil water isotope composition profiles and the 

associated uncertainty, the isotopic composition of the soil water was spatially and temporally 

interpolated using an ordinary kriging method in the MATLAB software package (The 

MathWorks, Natick, MA).  Soil water isotope compositions of lysimeters emplaced at equal 

depths were averaged for each collection date over all locations and applied to a grid with 1 cm 

spacing vertically and five-day spacing horizontally.  This was done to identify depths or times of 

either gradual or rapid turnover throughout the catchment.  Monthly amount-weighted isotope 

composition of precipitation along with precipitation amounts were calculated for Jan. 2009 

through Dec. 2011 for reference.  The color map thus created was applied to discern depth-time 

patterns of soil water isotope composition in relation to precipitation.  Depth to the water table at 

one location in the stream riparian zone was filtered using a ten-day moving average to reduce 

noise and was superimposed on the above map to facilitate the investigation of its possible 

relation to soil water isotopes. 

To determine spatial patterns of soil water isotope composition with depth and location in 

the catchment, various isotope profiles were created.  Seasonal profiles were created to separate 

temporal patterns from spatial patterns.  Seasonal groupings were performed following the 

convention as described above.  As described above, lysimeter samples are presented as 

catchment-averaged profiles, i.e., all sampled lysimeters at equivalent depths throughout the 

catchment for a given season were averaged to develop a composite average seasonal isotope 

profile.  Isotope profiles were also composited for each hillslope type (swale vs. planar hillslope), 

slope location (ridge top, midslope, and valley floor), and slope orientation (south-facing vs. 

north-facing) by averaging soil water collected from equal depths at each location.  In other 

words, for each season we calculated the average isotope composition and standard deviation for 

each depth (10, 20, 30, etc.) at each location.  Because profiles represent general seasonal patterns 

at given locations, depths with only one observation were removed from profiles to limit 

misinterpretation.  The winter and summer profiles were selected for comparison because the 

soils are typically the wettest during the winter and the driest during the summer months (Lin, 

2006; Lin et al., 2006b).  Furthermore, the winter and summer isotope profiles make up the 
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boundaries of the annual isotope profiles, providing the clearest differences in seasonal changes.  

In each soil water isotope profile, we have estimated representative soil horizons based on each 

lysimeter nest’s location and surveyed soil map and the mapped soil-bedrock interfaces (Figure 

2-1 and Table 2-1).  This may provide additional insight to the influence of soil horizonation on 

hydrologic processes and thus on soil water isotope compositions. 

2.4. Results  

2.4.1. Catchment Hydrology 

Annual precipitation amounts were 997.95 mm (2008), 1033.30 mm (2009), 895.56 mm 

(2010), and 1320.90 mm (2011) as recorded in the rain gauge.  During the winters (December-

March), the precipitation amounts were 250.67 mm (2008-09), 350.80 mm (2009-10), and 

276.70 mm (2010-2011), consisting mostly of snow.  Discharge ranged between 0 – 48 L/s, with 

periods of zero discharge typically occurring between late June and early September.  Large 

discharges (> 20 L/s) occurred immediately after large storms or snowmelt events, after which 

discharge quickly decreased to < 5 L/s.  Patterns of depth to water table mirrored discharge but 

had a slower rate of change.  Rising water tables were associated with large storms and/or 

snowmelt events but generally were found to relax more slowly than stream discharge.  Depth to 

water table within the stream riparian corridor ranged from 0.36 to 2.26 m during 2009-2011, 

with the deepest depth (well below the streambed) found at the end of the growing season (late 

Aug.). 

2.4.2. Precipitation Isotope Composition 

For the entire study period, the precipitation amount-weighted average isotopic composition 

was -8.71‰ and -57.35‰ for δ18O and δD, respectively (Figure 2-2).  For monthly averaged 

samples, the least depleted values were detected in the spring, with progressively more depleted 

values observed in the summer, fall, and then in the winter.  These data compare well to other 

observations of seasonal differences in precipitation isotope composition (Gat, 1996; Araguás-

Araguás et al., 2000).  This trend was attributed to the temperature dependent water 

fractionation associated with phase changes in the hydrologic cycle, including variable 
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temperatures at the moisture source of water, variable temperatures at the precipitation site, and 

variations in evaporative fluxes throughout the year.  The largest seasonal range in the 

precipitation’s isotopic signature occurred in the winter, while the smallest range was observed in 

the spring.  The weighted kernel density distributions (Figure 2-2) indicated that the isotopic 

composition of the precipitation within each season was normally distributed, yet the aggregated 

yearly distribution was non-normal, indicating that the impact of seasonality alters the relative 

frequency.  

 
Figure 2-2: Violin plots of the distribution of oxygen-18 (a) and deuterium (b) compositions in 
precipitation.  The plot for the total record consists of precipitation events collected from Jan. 14, 
2009 to Feb. 12, 2012, with sample number n indicated.  Seasons are divided based on 
astronomical calendar to more closely correspond to the growing season within the catchment.  
Colors of the seasons correspond to colors used in seasonal soil water profile figures (Figure 2-3, 
Figure 2-7, Figure 2-8, and Figure 2-9).  The shape of the violin plot is the smoothed, weighted 
kernel density distribution, normalized so the area of each plot is equal to one.  The center square 
is the amount-weighted mean composition and the bars are plus and minus two weighted-
standard deviations.  Black points are individual data points, jittered horizontally for visualization.   

 

Precipitation records were also analyzed to determine sub-seasonal temporal trends.  

Although the record contained substantial noise, the time series of individual precipitation sample 

compositions (Figure 2-3) showed typical seasonal oscillations, with depleted values in the winter 

months as snow and subsequently less depleted values in the summer months as rain. Unlike daily 
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and monthly amounts of precipitation, weekly amount-weighted isotope compositions (Figure 

2-4) showed strong seasonal trends, ranging from -25.80‰ to 1.31‰ for δ18O and from -

200.72‰ to 6.47‰ for δD.  Further, the monthly amount-weighted isotope compositions also 

showed a strong seasonality with much less noise (Figure 2-5).  

 
Figure 2-3: A total of 331 precipitation samples collected for isotope composition from Jan. 14, 
2009 to Feb. 12, 2012.  Precipitation is shown as both rain (grey circles) and snow (blue stars). 
All samples were collected over six-hour intervals.  The local meteoric water line (LMWL, solid 
line) was calculated using all precipitation samples (a).  The global meteoric water line (GMWL, 
dashed line) is plotted for reference.  The time series of δ18O for all precipitation samples and the 
daily precipitation record (b) with precipitation grouped into rain and snow. 
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The Local Meteoric Water Line (LMWL) of the SSHCZO was created using all 331 six-

hour precipitation sample composites.  The LMWL at the SSHCZO closely matches the Global 

Meteoric Water Line proposed by Craig (1961) (Figure 2-3), and the smaller intercept of the 

LMWL (i.e., 8.84) is typical of the slightly more humid climate of central Pennsylvania.  Snow 

(winter precipitation) at the SSHCZO was slightly more depleted than liquid precipitation (non-

winter precipitation) but had a larger range in isotopic composition. 

 
Figure 2-4: Temporal variation in weekly precipitation amount (dark bars), and the isotope 
composition of precipitation (gray bars) and soil water at three depths (shallow, intermediate, and 
deep).  Soil water data prior to November 2008 are not shown since precipitation record did not 
begin until January 2009.  Shaded regions correspond to one standard deviation of each soil 
depth.  Data for each soil depth is averaged over the entire catchment.  Groundwater mean (green 
line) is shown as a reference. 

2.4.3. Depth-Time Variability of Soil Water Isotope Compositions 

Aggregation of soil water samples across the entire catchment showed clear pattern of 

isotope composition attenuation with depth (Figure 2-4 and Table 2-1).  The kernel density 

distribution of isotopic composition of all combined soil water samples was normally distributed 

(Figure 2-6).  Further separation into shallow (≤30 cm), intermediate (40-100 cm), and deep soil 

water (≥120 cm) indicated the kernel density distributions remained consistently normally 
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distributed.  The stream water kernel density distribution had a slight bi-modal distribution, 

while that for groundwater was normally distributed for δ18O but bimodal for δD (Figure 2-6).  

As observed by Jin et al., (2011), for the smaller dataset, it is apparent that the range of isotope 

compositions substantially decreased from precipitation water to soil water to stream water and to 

groundwater.  During the entirety of this study, the groundwater isotope composition remained 

near its average of -8.82‰ and -56.53‰ for δ18O and δD, respectively. 

 
Figure 2-5: Monthly amount-weighted isotope composition in precipitation, the kriged map of 
soil water isotope composition through depth and time, and monthly precipitation amount.  Red 
values correspond to less-depleted isotope composition while blue values correspond to more-
depleted values.  Black circles correspond to catchment-averaged lysimeters (see text).  Ten-day 
moving averages of the groundwater level in the valley floor are plotted as a black line. Kriging 
uncertainty contours are plotted over the same space-time domain (see supplemental materials).  
Ordinary kriging and kriging variance were computed in Matlab. 

Isotope compositions of soil water varied seasonally, closely reflecting the precipitation 

composition (Figure 2-4).  Generally, more depleted compositions of soil water were found in the 

winter and spring and less depleted compositions were found in the summer and fall.  However, 

for a given year, the soil water sampled during the spring (rather than winter) was generally the 

most depleted due to the snowmelt.  Compositions evolved through the spring and summer 

months, with soil water isotope compositions becoming less depleted in the fall; however, the 

degree of such an enrichment trend varied from year to year (Figure 2-4). 
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Figure 2-6: Violin plots of the distribution of deuterium (a) and oxygen-18 (b) composition for 
each hydrologic pool within the catchment sampled from Jun. 13, 2008 to Mar. 16, 2012, with 
sample number, n, indicated.  The full record was split into four seasons, spring (c), summer (d), 
fall (e), and winter (f), based on astronomical calendar.  The full soil profile violin plot (orange) is 
a composite of shallow soil water (purple, ≤30 cm), intermediate soil water (teal, 40-100 cm), and 
deep soil water (blue, ≥120 cm).  The shape of the violin plot is the smoothed kernel density 
distribution, normalized so the area of each plot is equal to one.  Inside each violin plot is a 
standard bar plot. The white point corresponds to the median of the data, inner black box is 
interquartile range, and whiskers cover 1.5 interquartile range. Outliers are left off for clarity, but 
can be seen in the tails of the kernel density distribution. 
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Seasonal variation of soil water isotope composition was also reflected in its vertical profile, 

with δ18O and δD exhibiting strong damping with depth (Figure 2-7).  When analyzed as 

catchment-wide averages, the shallow soil lysimeters (<30 cm depth) showed larger standard 

deviations and had a mean similar to the isotope composition of seasonal precipitation.  This 

seasonal amplitude was attenuated with depth as soil water isotope compositions approached the 

groundwater average.  Overall, the winter isotope composition profile was more depleted than the 

groundwater average while the summer isotope composition profile was less depleted.  

Furthermore, the winter profile had a larger standard deviation for shallower soil depths (<100 

cm) when compared to the summer, suggesting a more hydrologically active soil profile where soil 

water was being replaced by new precipitation.  The stable isotope composition profiles for the 

transitional seasons of fall and spring were intermediate between that of the wet and dry seasons 

with shallow soil water closely matching seasonally-weighted precipitation compositions (Figure 

2-7).  Both these profiles had relatively constant means and decreasing standard deviations with 

depth.  The isotope profile during the spring season had relatively large standard deviation that 

was indicative of wetter soils and shorter residence times of water, whereas the fall season had less 

variation indicative of drier soils and longer residence times.  These trends matched our field 

observations (Lin, 2006; Lin et al., 2006b).  Both isotope profiles approached the groundwater 

average at deeper soil depths.  Interestingly, only the spring profile was more depleted than the 

associated seasonal precipitation composition for the entire depth. 
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Figure 2-7: Seasonal δ18O profiles of soil water for wet (winter) and dry (summer) seasons (a) and 
transitional seasons (spring and fall) (b) based on the three-year monitoring.  Isotope composition 
at each depth was averaged over the entire catchment.  One standard deviation is represented 
with shaded regions.  Depths with only one sample were removed for clarity.  For reference, 
groundwater mean and one standard deviation is shown as a grey bar, and the amount weighted 
precipitation compositions with weighted standard error for corresponding seasons are shown as 
colored arrows at the top. 

 

Closer investigation using weekly and monthly time series revealed more details of the 

differences in soil water isotope composition evolution with depth.  Water sampled from the 

lysimeters located in the shallow soil (≤30 cm) had the largest seasonality while water sampled 

from the deep lysimeters (≥120 cm) showed little seasonality (Figure 2-4).  The deepest soil water 

isotope compositions were relatively constant through time and space and closely matched the 

groundwater isotope composition (Figure 2-5).  This is likely due to the fact that these deep soil 

waters were collected in the midslope and valley floor where soil waters are known to have been 
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derived from not only precipitation inputs but also groundwater inputs (Jin et al., 2011).  Soil 

water sampled from the upper 30 cm had the largest δ18O variations, while maximum and 

minimum isotope compositions deeper in the soil profiles typically occurred later in time 

indicating a phase lag.  The time delay in the amplitude of the isotope soil profiles is especially 

evident in the upper soil layers and can be seen by comparing isotope composition of precipitation 

and soil water sampled at 10 cm (Figure 2-5).   

Inter-annual variability is also apparent through closer investigation of higher temporal 

resolution time series.  For instance, during the spring and summer of 2009 and 2011, the soil 

water isotope composition became less depleted than the groundwater average, with the shallow 

soil water showing the strongest trend (Figure 2-4 and Figure 2-5).  Total enrichment of shallow 

soil water (≤30 cm) from April to October was approximately 3‰ for �18O.  Enrichment of 

intermediate and deep soils also occurred but was less prominent.   

During the spring and summer of 2010, the soil water isotope composition showed a slightly 

different attenuation with depth as compared to that in 2009 or 2011 (Figure 2-4 and Figure 

2-5).  Over that period, soil water was more depleted than the groundwater average.  This 

initially more depleted signature was likely due to the 33% larger amount of winter precipitation 

during 2010 and resulted in a much more depleted starting point once the snowpack melted and 

the soil thawed.  This highlights that inter-annual variability in isotope composition cannot be 

neglected.  Throughout the remainder of the spring and summer in 2010, the soil water displayed 

a similar enrichment trend as in 2009 and 2011 but with a larger magnitude of 5‰ for δ18O in 

the shallow soil layer. 

2.4.4. Spatial Variability of Soil Water Isotope Compositions 

2.4.4.1. North and South Slopes 

To determine spatial patterns in the soil water stable isotope composition, variations of soil 

isotope profiles on the north (south-facing) and south (north-facing) slopes were compared 

during the winter and summer (Figure 2-8).  For both the north and south slopes, the winter 

profiles were depleted while the summer profiles were enriched (similar to precipitation) but with 

attenuation with depth showing an approach toward the groundwater average below ~100 cm.  

However, the amplitude of the winter (wet season) profiles differed between the two slopes, with 

a slightly more depleted signature observed on the north slope in the A-horizon (upper 20 cm) as 
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compared to the south slope. Further, the difference between isotope compositions in the A-

horizon of the winter and summer profiles was larger for the north slope as compared to the 

south slope.  Also for both the north and south slopes, the winter profile had a larger standard 

deviation (amplitude) than the summer profile.  The winter profile for both the north and south 

profiles showed considerable variability down to a depth of ~80 cm, while the summer profiles are 

relatively smooth. The winter-time variation is likely the result of episodic melting and the effect 

of preferential flow. 

 
Figure 2-8: Seasonally-averaged δ18O composition in soil profiles for the north (south-facing) (a) 
and south (north-facing) (b) slopes based on the three-year monitoring.  One standard deviation 
is represented with shaded regions.  Depths with only one sample were removed for clarity.  
Typical soil horizon interfaces are shown as black dashed lines.  Groundwater mean and one 
standard deviation are shown as grey bar for reference. 
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2.4.4.2. Ridge Top, Midslope, and Valley Floor 

Seasonal soil water isotopic composition profiles also differed with slope location regardless 

of the north or south slopes (ridge top, midslope, and valley floor). The amplitude of the winter 

profile for each slope location showed larger variability compared to the summer profiles (Figure 

2-9).  Profiles on the ridge top were limited by soil depth (<50 cm) and generally reflected winter 

and summer precipitation.  The winter profile at midslope showed increases in amplitude 

variation at both 20 and 60 cm depths, where horizon interfaces are located (Table 2-1), layers 

identified by Jin et al., (2011) as high-flow zones.  The winter profile in the valley floor showed 

the greatest variation in the amplitude in the upper part of the profile, which was likely due to the 

effect of large water table variations near the valley floor, plus episodic melting and the effect of 

preferential flow. 

 
Figure 2-9: Seasonally-averaged δ18O composition in soil profiles for each slope location based on 
the three-year monitoring: ridge top (a), midslope (b), and valley floor (c).  One standard 
deviation is represented with shaded regions.  Depths with only one sample were removed for 
clarity.  Typical soil horizon interfaces are shown for each slope location.  Groundwater mean and 
one standard deviation are shown as grey bar for reference. 
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2.4.4.3. Swale and Planar Hillslopes 

For both the winter and summer profiles in the swale depressions, there were specific depths 

where the standard deviation of isotopic composition quickly increased (Figure 2-10).  

Specifically, in the winter, the standard deviations increased at 30 and 60 cm depths and 

corresponded to the soil-bedrock interface on the ridge top and the B-C horizon interface at the 

midslope and valley floor lysimeter nests (Table 2-1).  Additionally, the swale summer profile 

showed increases at depths of 60 and 100 cm.  The planar hillslope isotope profiles, on the other 

hand, were relatively more uniform, but with large variation in amplitude in the A, B, and C-

horizons during the wet season.  Below the C-horizon, both swale and planar profiles were 

relatively constant approaching the groundwater mean (Figure 2-10). 

 
Figure 2-10: Seasonally-averaged δ18O composition in soil profiles for hillslope type based on 
three-year monitoring: swale depression (a) and planar hillslope (b).  One standard deviation is 
represented with shaded regions.  Depths with only one sample were removed for clarity.  Typical 
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soil horizon interfaces are shown for each hillslope type.  Groundwater mean and one standard 
deviation are shown as grey bar for reference. 

2.5. Discussion 

2.5.1. Damping of Seasonality with Soil Depth, Advection, and Mixing 

The seasonal damping with depth is characteristic of advective-dispersive transport and 

mixing (Leibundgut et al., 2009) and has been observed in previous studies (Eichinger et al., 

1984; Darling and Bath, 1988; Geake and Foster, 1989; Clark and Fritz, 1997; Tang and Feng, 

2001; Lee et al., 2007) including work at Shale Hills (Jin et al., 2011).  However, the degree and 

cause of damping reported in these earlier studies differed.  Leibundgut et al. (2009) pointed out 

that the depth of seasonal damping decreases as soils become finer grained.  For example, in deep 

gravel profiles of western Germany, Eichinger et al. (1984) found the seasonal isotopic profile was 

heavily damped over the first 9 m; while in the English chalk, heavy isotopic damping was found 

in the first meter (Darling and Bath, 1988; Geake and Foster, 1989).  At the SSHCZO, the silt 

loam or silty-clay loam provided strong attenuation of the seasonal isotopic profile typically 

within the upper 1.5 m.  One explanation for the relatively rapid attenuation of the seasonal 

isotope profiles is hydrodynamic mixing during percolation through permeable soils, a 

phenomenon observed in the majority of profiles at the SSHCZO (Figure 2-7 through Figure 

2-10). 

2.5.2. Evidence for Preferential Flow 

Previous work at the SSHCZO has identified the importance of both vertical and lateral 

preferential flow in the catchment (Lin, 2006; Lin and Zhou, 2008; Graham and Lin, 2011; Jin 

et al., 2011). Vertical preferential flow in the summer months has been identified as occurring 

through macropores resulting from multiple causes including hydrophobic organic surface layers 

and vertical high-permeability zones, while lateral preferential flow occurs along soil horizon 

and/or soil-bedrock interfaces (Lin and Zhou, 2008; Graham and Lin, 2011; Jin et al., 2011).  

Our findings in this study support these observations and provide further insight into specific 

locations.  
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Soil water isotopic profiles help to understand the timing and direction of water movement 

at the SSHCZO.  For example, the averaged seasonal isotope profile (Figure 2-7) demonstrated 

the average isotope concentration with depth as well as the standard deviation.  In the summer 

profile, it was clear that the standard deviation remained relatively low throughout the upper 90 

cm.  This low standard deviation is indicative of longer residence times and smaller change within 

the soil profile.  This pattern changed slightly at a depth of 100 cm where the standard deviation 

expanded.  To explain this increase in standard deviation, water with a different isotope 

composition must have replaced the water in deeper soils without displacing the water in the 

shallower soil layers.  There were two possibilities for this phenomenon: 1) downward preferential 

flow through macropores located either in the valley itself or derived from interflow from upslope 

that itself derived from water inputs through macropores located upslope, or 2) upward 

groundwater movement through either capillary rise and/or a rising water table.  Upward 

groundwater movement was unlikely since the isotope composition of groundwater remains 

nearly constant throughout the summer months and thus would not explain the increased 

standard deviation.  This means that downward preferential flow, the flow that bypassed the 

shallow part of the soil matrix (either through macropores in the valley floor or upslope) was 

likely the cause of this increased standard deviation.  Evidence suggested vertical preferential 

flow, which bypassed the shallow soils, occurred for each landform type and hillslope location but 

only appeared in the isotopic measurements during the summer months (Figure 2-8, Figure 2-9, 

and Figure 2-10).  

Soil water isotopic composition profiles also provided the evidence of lateral preferential flow 

within the SSHCZO.  For example, the winter isotope profile for soil water on the midslope 

showed increases in standard deviation at depths of 20 and 60 cm depths associated with the A-B 

and B-C horizon interfaces (Table 2-1 and Figure 2-9).  This pattern of increased standard 

deviation at depths related to soil horizon or soil-bedrock interfaces occurred in other soil profiles 

during the wet season (including the valley floor, swale, and planar hillslopes), suggesting that 

lateral preferential flow was widespread within this catchment.  Note that evidence for such 

lateral preferential flow was not observed during the summer months when soils were dry (Figure 

2-8, Figure 2-9, and Figure 2-10).  This general model for fast water flow through vertical 

macropores and horizontal soil interfaces was also invoked by Jin et al. (2011) to explain the water 

isotopic data and water chemistry data specifically for the south planar hillslope.  
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2.5.3. Snow Melt Dynamics 

Soil water isotope composition profiles also provided insight into snowmelt dynamics, which 

play an important role in solute transport and chemical weathering differences between the slopes 

at the SSHCZO.  This was best observed when comparing the profiles from the north (south-

facing) and south (north-facing) slopes (Figure 2-8).  It was clear that the north slope had a more 

depleted composition in the A-horizon during the winter months when compared to the south 

slope.  This more depleted signature was due to varying snowmelt dynamics.  Due to the small 

size of the catchment, the amount and isotope composition of snowfall is assumed to be the same 

for both the slopes.  The east-west orientation of the catchment, however, produces an 

asymmetry in solar radiation between the north (south-facing) slope and south (north-facing) 

slope.  The higher solar radiation on the north slope supports a relatively thin snowpack (typically 

<30 cm) with likely melting and infiltration to the surface soils.  The infiltration of isotopically-

depleted snowmelt alters the composition of the upper 20 cm of the soil resulting in a soil water 
isotope composition of -16‰ for δ18O on the north slope.  Conversely, on the south slope, the 

snowpack remained intact for longer periods in the winter months.  While the south-side 

snowpack remained frozen, the air temperature increased and the relative humidity remained low 

allowing the snowpack to sublimate and enrich the isotope composition of the residual snowpack.  

Over the winter season this resulted in a less depleted isotope composition in the snow on the 

south slope, and later melting and infiltration than the north slope.   

The temporal evolution of soil water isotopes with depth provided other insights into the 

importance of snow in soil water dynamics at the SSHCZO.  For example, after the winter of 

2010, the spring and summer isotope profiles showed dramatically more depletion throughout the 

entire profiles (Figure 2-5).  After the first sampling in the spring, relatively depleted isotope 

compositions appeared in depths from 10 to  >150 cm.  This depleted signature was due to light 

wintertime precipitation, melting and infiltration, which subsequently mixed intermittently with 

deeper soil (150-175 cm) and groundwater.  This depleted isotope signature remained in soil 

water through mid-May 2010, when spring/summer precipitation gradually replaced the shallow 

soil water while deeper soils (>25 cm) continued to hold water with the depleted signature until 

fall.  During this period, most soil profiles showed high moisture content during the spring 

snowmelt and this moisture was retained through early summer.  As the growing season 

progressed transpiration gradually removed the matrix water, which then began to absorb 
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spring/summertime precipitation.  Still, the soil water at the intermediate depths retained the 

winter precipitation signature through the entire growing season, showing somewhat depleted 

signatures at 70 cm depth in October 2010 (Figure 2-5). 

2.5.4. Evaporation Dynamics 

Seasonal enrichments of soil water isotope compositions were found to occur each growing 

season (spring-summer) (Figure 2-4 and Figure 2-5).  There are two factors contributing to this 

enrichment trend: 1) evaporation of water from the soil matrix or 2) input of less depleted 

summer precipitation.  To determine the degree of growing season evaporation, soil water 

samples were plotted against the LMWL (Figure 2-11).  Variations along the LMWL 

correspond to the seasonal precipitation compositions while deviations to the right of the line are 

indicative of evaporative effects due to differences in fractionation rates of oxygen-18 and 

deuterium (Barnes and Allison, 1988), allowing for distinction of enrichment trends.  During the 

summer months all the soil water samples fell on or above the LMWL, with samples from 

shallow soils (≤30 cm) near the spring and summer precipitation compositions and samples from 

intermediate soils (40-100 cm) near the groundwater average (Figure 2-11) indicating mobile soil 

water showed little to no evaporative signal, but rather was highly dependent on the precipitation 

isotope composition.  Additionally, investigation of deep soil waters (≥ 120 cm) showed no 

evidence of evaporation (data not shown).  Because of the limited role of evaporation, 

transpiration is believed to be the main contributor of the evapotranspiration flux in this dense, 

forested catchment. However, we feel that the lysimeters may not be adequately sampling tightly 

bound water and a study is underway to assess this effect. 
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Figure 2-11: Shallow (≤30 cm depth) and intermediate (40-100 cm depth) soil water sampled 
during the summer (dry) season with SSHCZO Local Meteoric Water Line. Amount weighted 
precipitation compositions with weighted standard error bars for each of the four seasons are 
shown for reference.  Green region indicates groundwater average (± one standard deviation) for 
each isotope composition. 

2.6. Summary Conclusion 

The stable isotope network developed at the SSHCZO has provided extensive monitoring of 

the evolution and patterns of water stable isotopes for over three years beginning in 2008.  

Through high frequency sampling of precipitation and groundwater, the isotope compositions of 

the soil profile’s end members were established.  Comprehensive investigations of soil water 

isotope spatiotemporal patterns have provided the following conclusions: 

 

1. Shallow soil water was highly influenced by seasonal precipitation input composition.  

Monitored soil water clearly displayed the seasonal isotopic signal of precipitation, with 

more depleted values typically occurring in the winter months and less depleted values 

occurring in the summer months. 

2. The seasonal amplitude of soil water isotope composition was heavily damped within 

depths of 1-2 m, approaching a nearly constant value similar to the groundwater 
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composition (Figure 2-7).  This successive damping suggests the importance of 

hydrodynamic mixing, which integrates multiple seasons of precipitation. 

3. Large variations in the winter soil water isotope profiles were observed at most sites and 

we interpreted this variation as evidence for preferential flow (Figure 2-8, Figure 2-9, and 

Figure 2-10).  Increased variations were likely due to intermittent snowmelt, the effects of 

soil structure and horizons, and low residence times.  Relatively smooth isotope profiles 

were observed in the summer season indicating preferential flow is less frequent or 

observable during the summer.  

4. Asymmetry in the radiation balance between north (south-facing) and south (north-

facing) slopes seems to explain early snowmelt and infiltration on the north slope, while 

the snowpack on the south slope sublimated and became enriched before infiltrating 

(Figure 2-8). 

5. In the winter of 2009-10, heavy snowfall with depleted isotope compositions influenced 

the soil water isotope composition for the entire growing season.  The depleted signatures 

remained in the deep vadose zone through the end of the growing season (Figure 2-5). 

6. Summer soil water profiles aggregated across the catchment showed little evaporative 

effect (Figure 2-7 and Figure 2-11).  The soil water isotope composition at SSHCZO is 

dominated by the precipitation input, with minor evaporative enrichment, and is 

consistent with transpiration dominating evapotranspiration in this dense, temperate 

forest environment.   

 

One limitation of this study is soil water sampled from suction-cup lysimeters may not 

reflect tightly-held water within the soil matrix (Darling and Bath, 1988; Landon et al., 1999; 

Figueroa-Johnson et al., 2007; Brooks et al., 2009).  Currently, new experiments are underway to 

resolve the mobile and less-mobile soil water fractions.  For example, studies are underway by the 

SSHCZO ecology team to investigate tree species water usage for addressing interception, 

transpired water and root uptake.  By monitoring tree xylem and root δ18O composition, we will 

be able to determine effective depth of root water extraction.  Lastly, recent work has identified 

the importance of fractured bedrock and deep groundwater as important water sources to 

headwater streams (Burton et al., 2002).  Drilling to explore deep groundwater at the SSHCZO 

is ongoing. 
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Chapter 3.  

Interpreting High-Resolution Sampling of Precipitation Isotope 
Compositions for Hydrologic Applications 

This chapter will be submitted for publication with co-authors C. J. Duffy and E. W. Boyer.   

3.1. Abstract 

Complex, catchment-scale isotope ecohydrologic studies are becoming more prevalent as field 

and laboratory instrumentation becomes more accessible.  Associated with these studies is the high 

frequency sampling and isotopic analysis of precipitation, which is often performed to ascertain 

processes that may occur over short time intervals.  Often long term hydrologic studies are being 

performed concurrently to monitor interactions between hydrologic pools.  This investigation 

examined the effect of high frequency (6 hourly) weighted time averaging of isotopic composition of 

precipitation at the Susquehanna-Shale Hills Critical Zone Observatory (SSHCZO).  Unweighted 

and amount weighted kernel density estimates of 6 hourly samples showed precipitation 

compositions are biased towards more depleted values.  Time averaging decreased variation as 

samples were integrated to daily, weekly, monthly, or seasonally amount weighted values.  Each time 

series provided a different local meteoric water line, which could influence hydrologic 

interpretations.  The role of high frequency sampling of precipitation clearly shows that the 

estimation of the local meteoric water lines is influenced by low d-excess and low amount events, 

which contribute very little to the watershed’s hydrology. The study suggests that the most useful 

LMWL will depend on the nature of the study and the time scales and processes one is interested to 

study. 

3.2. Introduction 

Stable isotopes of water (δ18O and δD) have been used extensively in environmental 

investigations to trace pathways which otherwise could not be observed.  Because they move with the 

water molecule itself, liquid water stable isotopes are an ideal tracer for many experimental studies.  

Over the past few decades, substantial progress has been made using water stable isotopes to inform 

researchers about various environmental processes including groundwater recharge rates (Gat, 1971; 

Darling and Bath, 1988; Criss and Davisson, 1996; Winograd et al., 1998), storm flow generation 
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and hydrograph separation (Sklash et al., 1976; Sklash and Farvolden, 1979; Rice and Hornberger, 

1998), and determination of preferential flowpaths (McDonnell, 1990; Leaney et al., 1993; Kirchner, 

2003; Vogel et al., 2010).  Recent work has advanced the understanding of ecohydrologic processes 

such as tree water use (Dawson and Ehleringer, 1991; Ehleringer and Dawson, 1992; Brooks et al., 

2009; Gierke, 2012) and vadose zone hydrology (Zimmermann et al., 1968; Barnes and Allison, 

1988; Phillips, 1995; Gazis and Feng, 2004).  Common to each of these studies is the analysis and 

interpretation of precipitation isotope compositions as the hydrologic input to the system. 

The physical processes governing isotopic compositions of precipitation have been well detailed 

over time.  Dansgaard (1964) outlined the kinetic and equilibrium fractionation factors which 

influence isotopic composition evolution as well as established a linear relationship between annual 

isotopic composition and surface air temperatures for the globe.  Over time, four main factors have 

been found to contribute to the isotopic composition of precipitation: continental effects where 

compositions become more depleted as an air mass moves from its source across a continent, latitude 

effects where compositions become more depleted towards the polar regions, altitude effects where 

compositions become more depleted with altitude due to rain out processes, and amount effects 

where compositions become more depleted with increasing precipitation amounts.  Each of these can 

be thought of as relating to the amount of “rain-out” an air parcel has experienced as it moves from 

its moisture source to the precipitation site. 

Craig (1961) was the first to identify a linear relationship between δ18O and δD compositions 

by analysis of 400 samples across the globe.  The result was the global meteoric water line (GMWL): 

   !" = 8  δ!"O + 10  ‰   (1)  
Over the past few decades, with an improved understanding of stable isotope geochemistry and 

larger datasets, more precise values for the slope and intercept of the GMWL were developed 

(Rozanski et al., 1993):   

   !" = 8.17   ±0.07   δ!"O + 11.27   ±0.65   ‰   (2)  
The GMWL is a composite of many local precipitation isotope compositions and corresponding 

local meteoric water lines (LMWL) reflecting local or regional meteorological processes.   

Few studies detail the methods of constructing LMWLs.  Typically, LMWLs are constructed 

using standard least squares regressions which assumes the observed x variable (δ18O) is known 

exactly, which may be a poor assumption in many situations, especially in the case experimental 

studies where both isotopes are measured with varying degrees of precision. The reduced major axis 
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method, which has been employed by the IAEA (1992), is an improvement over the standard least 

squares regression by allowing a standard deviation to be associated with the x and y variables.  An 

additional improvement was implemented by Argiriou and Lykoudis (2006) with the use of error-in-

variables generalized least squares regression.  An additional complication is the decision to either 

use the highest resolution samples or averaged isotopic compositions in the chosen regression 

procedure.  Simple regression procedures are typically used to produce LMWLs, but Hughes and 

Crawford (2012) showed that the incorporation of precipitation amounts to the least squares 

regression can statistically change the regressions.  As such, researchers are left with ad-hoc strategies 

to construct the LMWL for describing precipitation isotope composition patterns for the given 

location and particular application. 

The objectives of this study are to develop a general understanding of high frequency isotopic 

composition of precipitation at the SSHCZO for the period 2009 – 2012. The goal of the 

experiment is to support ongoing isotope hydrology studies in an upland watershed.  We are 

interested in understanding the underlying probabilistic characteristics of isotopic species in 

precipitation and how they may evolve through time.  Additionally we hope to establish a robustly 

defined local meteoric water line sufficient to support hydrologic interactions with other δ18O and 

δD pools at the SSHCZO ( http://criticalzone.org/shale-hills).  Finally, over the longer term, this 

study will improve the prospects of developing and/or analyzing space and time distributions for 

isotopes in precipitation, which could be implemented into distributed numerical models for isotope 

transport and age modeling. 

3.3. Materials & Methods 

3.3.1. SSHCZO Description & Climate 

The SSHCZO is a 7.9-ha forested catchment located in central Pennsylvania and is 

characteristic of the Ridge and Valley Physiographic Province of eastern United States (Figure 3-1).  

It is located (40°40’ N, 77°54’ W) approximately 320 km west of New York City and 250 km 

southeast of Lake Erie and varies in elevation from 311 m at the ridge top to 258 m at the stream 

outlet.  The V-shaped, headwater catchment is oriented east-west and contains an intermittent 1st 

order stream that typically flows from late September to early June.  The SSHCZO lies within the 
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Shavers Creek watershed of the Juniata River, which in turn is a sub-basin of the Susquehanna 

River.  

 The climate for SSHCZO is humid where the long-term average annual precipitation is 1,006 

mm and is approximately evenly distributed throughout the year (Figure 3-2).  Winter precipitation 

consists of a mixture of rain and snow, with the catchment receiving approximately 116 mm of snow 

annually.  Mean annual temperature is 10.1°C and spends, on average, 32.4 days below 0°C and 61.2 

days above 26.6°C based on a 30-year record (NOAA, 2007).  Summers are typically hot and humid 

with high temperatures reaching >30°C and precipitation events consisting of short, high-intensity 

storms.  Winters are typically wet and cold with temperatures less than -10°C and precipitation 

events consisting of both rain and snow.   

 
Figure 3-1: Location of Susquehanna-Shale Hills Critical Zone Observatory (yellow start) with 
respect to the Chesapeake Bay major watersheds (black lines).   
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3.3.2. Monitoring Procedures & Isotopic Analysis 

Meteorological data were collected in a small clearing area along the ridge of the SSHCZO 

catchment from 2009-2012.  Precipitation was monitored using an Ott-Pluvio weighing bucket 

(Hach Company, Loveland, CO) in ten-minute intervals with a precision of 0.1 mm and a Laser 

Precipitation Monitor (LPM, Thies Clima, Göttingen, Germany) in ten-minute intervals with 

precision of 0.01 mm. The LPM is capable of distinguishing 21 separate types of precipitation (e.g., 

drizzle, rain, snow, or hail) based on the size and velocity of the precipitation.  Data were collected 

and transmitted on-line in real time and processed annually for missing data.  Appendix A outlines 

the relationship between the Ott and LPM.  Results from their comparison provided a range of 

regressions depending on integration period (10-minute, 1-hour, 6-hour, daily).  Additionally the 

Ott was shown to be less variable over longer periods of the record.  Therefore the Ott precipitation 

record was used when possible to determine precipitation amounts for the catchment.  Missing data 

in the Ott record were filled directly using the ten-minute regression of the LPM and regional 

observations provided by the Pennsylvania State Climatologist (http://climate.met.psu.edu/).   

Precipitation samples, for isotopic analysis, were collected Jan. 14, 2009 to Dec. 20, 2012 on an 

event basis using an automatic precipitation sampler (model: NSA 181/S, Eigenbrodt GmbH & 

Co., Königsmoor, Germany) located in the clearing area on the ridge top approximately 6 m from 

the Ott-Pluvio weighing bucket.  To capture intra-storm variability, precipitation was collected for 

the first 30-minutes of a storm followed by three 6-hour intervals.  At the onset of an event, a gold-

plated sensor would detect moisture causing the instrument’s funnel cap to open and begin collecting 

precipitation while, at the same time, initiating an internal timer.  For the first 30-minues the 

instrument would funnel precipitation to the first bottle in series.  The funnel cap would remain 

open, provided that the gold-plated sensor remained wet.  After the first 30-minutes, the instrument 

would begin to funnel any precipitation to the second bottle in series for an additional 6-hours, after 

which bottles three and four would fill for six additional hours each.  If at any point during the 

collection period the gold-plated sensor became dry, the instrument’s funnel cap would close, 

preventing evaporation of the precipitation sample.  The instrument was capable of collecting two 

separate events before resetting.  Each one-liter bottle in the instrument was cleaned and dried prior 

to installation.  In the event of extremely intense events, the instrument provided overflow routing to 

a reserve bottle preventing cross contamination.  Samples collected in the reserve bottle were brought 

to the lab and archived but not included in this analysis.  Additionally, heating coils located on the 
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gold-plated sensor and within the funnel allowed for continual measurements of frozen precipitation.  

All precipitation samples were collected 1-3 days after an event and stored in 30 mL amber glass 

vials with cone-lined caps to prevent evaporation.  Sample bottles were stored in a cool location and 

contained little or no headspace, when collection amounts permitted, to minimize water-air 

exchange. 

Average precipitation type (rain, snow, drizzle, etc.) was estimated for each precipitation sample 

collected from the raw LPM record.  The 21 types were narrowed and grouped into heavy rain, light 

rain, heavy snow, light snow, drizzle, and hail.  For this study, the types were further narrowed for 

simplicity into rain or snow.  The average type was estimated by determining the most predominate 

type of precipitation during a given collection period.  During periods with numerous types of 

precipitation, the type that contributed the majority of precipitation amount to the sample was 

chosen.  This procedure was labor intensive and resulted in a subjective identification of precipitation 

over each collection interval.  In the event of gaps within the LPM record, sample precipitation type 

was flagged as missing data.   

Water samples were analyzed using laser absorption spectrometer (DT-100 Liquid Water 

Isotope Analyzer, Los Gatos Research, Inc., Mountain View, CA) following the IAEA Standard 

Operating Procedure (Newman et al., 2008).  The analytical precision of the instrument is 0.1‰ and 

0.8‰ for oxygen-18 and deuterium, respectively (Lis et al., 2008).  The isotopic composition of the 
water was reported as a δ-value relative to Vienna Standard Mean Ocean Water (VSMOW): 

   !!(!"#$!") =
!!

!!"#$%
− 1   ×  1000   (1)  

where R is the ratio of deuterium to hydrogen or 18O to 16O in the unknown (X) or VSMOW. 

3.3.3. Analysis Methods 

3.3.3.1. Kernel Density Estimates 

The frequency of observing a precipitation isotope composition at a given location can be 

difficult to infer from a simple time series, but fortunately there exist numerous statistical tools to 

assist in determining distributions from observations.  Univariate and bivariate kernel density 

estimators were constructed to determine the underlying distribution of precipitation isotope 

compositions at SSHCZO.  Kernel density estimation (KDE) is a nonparametric statistical tool used 

to estimate the probability density of a continuous random variable and has advantages over standard 
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histograms.  For example, KDEs are smooth, data dependent estimates of probability distributions 

while histograms require bin width and bin location parameters, making discontinuous estimates of 

the probability density.  To demonstrate the advantages of KDEs over histograms, probability 

density histograms were constructed for the full dataset for δ18O values only.  Bin widths were 

determined using the Freedman–Diaconis rule, where the bin width is twice the interquartile range 

divided by the cubed root of the sample size (Freedman and Diaconis, 1981).  To aid visualization of 

bivariate KDEs, contours were selected to correspond to cumulative probability densities of 95, 90, 

75, 50, 25, 10, and 5%.  Contours can be thought of representing a certain quantile of observations 

(i.e. 95% of the observations fall inside the 95% contour). 

There are two parameters for KDE construction, kernel type and bandwidth.  For both the 

univariate and bivariate case, Gaussian kernels were used for their straightforward nature.  Alternate 

kernels were investigated briefly and results showed similar KDEs.  Bandwidth selection, on the 

other hand, is important to KDE construction as it balances smoothness and resolution of the 

probability density distribution.  A bandwidth that is too small results in a jagged distribution 

difficult to interpret, while a bandwidth that is too large results in an overly smooth distribution 

disguising asymmetries.  

To more closely investigate the influence of bandwidth selection on the univariate and bivariate 

KDEs, a subset of the full precipitation record was selected.  Selection of the subset was performed 

manually extracting a much smaller (6 samples) dataset that contained relatively large variations in 

isotopic composition and precipitation amount (Table 3-1).  The six observations were collected 

within a 24-hour period during September 2011 and had an arithmetic mean of -9.11‰, a weighted 

mean of -8.87‰, and a range of 4.76‰ for δ18O and an arithmetic mean of -60.84‰, a weighted 

mean of -57.99‰, and a range of 41.40‰ for δD.  Reduction of the precipitation record from 456 

to six reduced the complexity of the record and allowed simplified visual investigation of the KDEs.  

Two bandwidths selection methods were compared for a univariate KDE of the subset; one set 

equal to unity and the other determined using the Silverman method (Silverman, 1986).  The 

Silverman method provided relatively robust and straightforward estimates of bandwidth for the 

univariate distribution of the subset and was then used in the bivariate distribution of the subset.  

Because of its overall robustness and its accessibility, the Silverman method was then used in 

determining the bandwidth of the univariate and bivariate KDEs for the full precipitation record. 
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Further, KDEs were constructed from the subset using isotopic compositions only (unweighted 

KDEs) and using isotopic compositions weighted by precipitation amounts (weighted KDEs) for 

both univariate and bivariate distributions to understand the importance of precipitation amounts on 

the distributions.  Weighted KDEs scale individual kernels by fractional amounts to estimate the 

probability distribution.  Observations associated with very small amounts (<1 mm/6 hours) 

contributed very little to a given KDE. 

 

Table 3-1: Subset of complete precipitation dataset for analysis of effects of bandwidth selection and 
precipitation amount weighting on one-dimensional and two-dimensional kernel density estimations 
(Figure 3-3 and Figure 3-4).  

Date of 
Event  

Time of 
Event 

Duration of 
Collection 
(HH:MM) δD (permil) δ18O (permil) 

Amount During 
Collection 

(mm) 
9/6/11 8:45:00 AM 0:30 -75.73 -10.60 0.2 
9/6/11 9:15:00 AM 6:00 -74.26 -10.52 8.3 
9/6/11 3:15:00 PM 6:00 -78.73 -11.16 14 
9/6/11 9:15:00 PM 6:00 -57.89 -8.86 28.2 
9/7/11 3:50:00 AM 0:30 -37.33 -6.40 1.4 
9/7/11 4:20:00 AM 6:00 -41.06 -7.06 23.5 

 

3.3.3.2. Integration Periods 

Individual precipitation samples were time-averaged to daily, weekly, monthly, and seasonally 
amount weighted compositions for both δ18O and δD to determine the effects of time integration on 

the time series and the LMWL.  Yearly amount weighted values for each of the four years were also 

calculated to understand interannual variability.  Integration periods were selected for convenience 

and for comparison of typical sampling procedures of other isotope hydrology studies.  Many 

hydrologic studies analyze bulk daily, weekly or monthly precipitation samples for isotopic 

composition and do not collect precipitation in sub-daily intervals.  Bulk precipitation collection or 

low-resolution sampling effectively performs precipitation amount weighting in the field as larger 

events contribute more volume to a given sample.  To integrate high-resolution samples from 

SSHCZO to longer intervals, the sample precipitation isotope compositions were weighted by 

precipitation amount and calculated using the following equation: 
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   (3)  

where δT is the amount-weighted precipitation value, Pi represents the amount (depth) of 

precipitation in an event, δi is the isotope composition of an event, and n is the number of events in 

the time period considered. 

3.3.3.3. Regression Procedures 

The δ18O and δD values from the various time series (sample, day, week, month, season) were 

used to construct the local meteoric water line for SSHCZO.  Regressions were performed using 

ordinary least squares regression procedure (IAEA, 1992) on each time series as well as using a 

precipitation amount weighted least squares regression (Hughes and Crawford, 2012), yielding a 

total of six time-averaged estimates of the LMWL.  Details on regressions procedures are provided 

in Appendix C.  Correlation coefficients for ordinary least squares and precipitation weighted least 

squares regressions were calculated for each LMWL.  T-tests for differences in slope between the 

precipitation amount weighted least squares regression and each ordinary least squares regression 

were performed following Volk (1958, p. 241). 

3.4. Results & Discussion 

3.4.1. Observed Meteorology 

Although monthly precipitation amount normals, based on NOAA 30-year climate data 

(NOAA, 2007), are evenly distributed throughout the year, for the four-year observed record, 

precipitation amounts varied from month to month within a given year imposing interannual 

variability into the precipitation record.  Typical of most locations, the SSHCZO seasonal 
compositions of δ18O and δD in precipitation are largest in the late spring and early fall with low 

values in the winter.  The driest year was 2009, with the first four months having considerably less 

precipitation than average and seven out of twelve months having less than average.  The wettest 

year was 2011, with well above average precipitation occurring during March, April, and May.  

Interestingly, during the four observed years, precipitation amounts were near equal or less than 

average for February each year and above average for the month of May.  The annual precipitation 



 

45 

totals were 1,033 mm, 895 mm, 1,326 mm, and 930 mm for 2009 – 2012 respectively, values which 

were similar to the climate normal of 1006 mm.   

The monthly temperatures of each year matched relatively closely with the climate normal.  

Temperatures tended to be coldest during the months of January, February, and December and 

warmest during June, July and August.  The coldest year observed was 2009, with temperatures in 

January, May, June, July and December being clearly less than the long-term average.  The warmest 

year was 2012, with temperatures well above average during January, February, March, May and 

December. 

 

 
Figure 3-2: Monthly climate normals for precipitation (grey bars) and temperature (grey circles) 
based on NOAA 30-year record and monthly precipitation and temperature observations at 
SSHCZO for 2009 – 2012.   

 

Six major meteorological events were identified using NOAA’s Feature Directory for State 

College, PA (http://www.erh.noaa.gov/ctp/features/).  The events were categorized as either a 

significant snow event or tropical storm.  The three snow events identified include the October 15 – 

16, 2009 storm which was the earliest measured snow fall event, dropping 15 cm across much of the 

state, the combination of storms on February 6 and 10, 2010 which dropped more than 60 cm of 
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snow throughout Pennsylvania, and the Oct. 29 – 30, 2011 storm (i.e.  “Snowtober”) which dropped 

more than 20 cm of snow and caused widespread power outages.  The other three major 

meteorological events were categorized as tropical storms or remnants of tropical storms.  These 

events include the remnants of Tropical Storm Nicole September 30 – October 1, 2010 which 

dropped 10 cm throughout the state, Tropical Strom Lee August 4 – 8, 2011 which dropped more 

than 35 cm of precipitation in eastern Pennsylvania, and Hurricane Sandy October 28 – 30, 2012 

which dropped over 7 cm of precipitation across much of the state and caused widespread damage 

along the Atlantic coast.   

3.4.2. Kernel Density Estimations 

3.4.2.1. Sample Test Case 

To visualize the construction of the unweighted one-dimensional KDE (Figure 3-3a), 

individual Gaussian kernels (blue curves), with standard deviation of one, were centered at each of 

the subset’s six observed isotopic compositions.  Individual kernels were scaled by ⅙, to equally 

weight each kernel.  The summation of the individual kernels yielded a smooth kernel density 

estimation for the data (red curve) with a bandwidth of one.  It is clear that the KDE with a 

bandwidth of one was fairly smooth and showed two distinct peaks at -11.00‰ and -6.8‰.  

Conversely, using the Silverman method to calculate a bandwidth of 1.26, the KDE (black curve) 

became smoother and loss the two distinct peaks.  Clearly, bandwidth selection plays an important 

role in establishing the shape of the distribution, as a balance must be made between smoothing and 

resolution.   

To understand the impact of precipitation amounts to one-dimensional weighted KDEs (Figure 

3-3b), individual Gaussian kernels (blue curves) were scaled based on their specific fraction of the 

total amount rather than a uniform ⅙.  For example, the sample, which began collection at 9:15 PM, 

had a δ18O value of -8.86‰ and an associated amount of 28.2 mm, and thus was scaled by 37.3%, its 

contribution to the total precipitation amount.  Further the next sample collected had a δ18O value of 

-6.40‰ and an associated amount of 1.4 mm and was scaled by 1.85%.  It is evident this adaptive 

scaling dramatically influenced the contributions of each event to the total KDE (red curve).  

Interestingly, the KDE constructed using the Silverman method (black curve) has a bandwidth of 
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1.15, which is similar to the KDE constructed with a bandwidth of one (red curve), suggesting 

bandwidth selection may be less important when dealing with weighted KDEs.  

Comparison of unweighted and weighted KDEs indicated important differences, which could 

impact LMWL interpretation for hydrologic investigations (Figure 3-3).  In the case of unweighted 

one-dimensional KDE with a bandwidth selected using the Silverman method (black curve), the 

KDE showed the highest density of δ18O near -11‰ and a tail towards less negative values whereas 

the similar, weighted one-dimensional KDE showed the highest density of δ18O near -8.4‰ and a 

more normally distributed shape.  These clear differences in mean and shape were directly attributed 

to the amounts of precipitation associated with each event.  Determining the applicability or utility 

of an unweighted or weighted KDE depends on the research question.  In the case of understanding 

the possible distributions of isotope compositions for a given time or location, an unweighted KDE 

would be adequate.  Occasionally associated precipitation amounts are unavailable in an isotope 

composition dataset, requiring the use of an unweighted KDE.  On the other hand, when associated 

precipitation amount data is available, and the research question entails precipitation’s interaction 

and contribution to various hydrologic pools, a weighted KDE is likely most applicable.   

 

 
Figure 3-3: One-dimensional kernel density estimations for unweighted (a) and weighted (b) subset 
of full precipitation dataset.  Gaussian kernels (blue curves) are centered over data points (red points) 
and have a standard deviation equal to one.  Summation of individual Gaussian kernels gives kernel 
density estimation with bandwidth equal to one (red curve).  Kernel density estimation with 
bandwidth selected using Silverman method is shown in black.  Distribution shapes change with 
bandwidth selection and incorporation of precipitation amounts. 
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Two-dimensional KDEs of precipitation have utility when an understanding of both isotope 

species can provide information on evaporation processes or connections of precipitation to various 

hydrologic pools.  Before applying this to the full precipitation dataset, assessment of the 

construction of two-dimensional KDEs for the subset was performed to understand the impact of 

precipitation amount weighting on the two-dimensional KDEs.  Visualization of the two-

dimensional KDEs was performed similarly to the one-dimensional KDEs, except, in this case, two-

dimensional Gaussian kernels, with differing standard deviations, were centered at the observations.  

Directional standard deviations of the individual kernels varied because the range of δD observations 

is approximately eight times larger than that of δ18O.  Using the Silverman method for bandwidth 

estimation, the y-directional standard deviations were set to 11.53 (unweighted) and 10.96 

(weighted) and the x-directional standard deviations were set to 1.26 (unweighted) and 1.15 

(weighted).  This differing directional kernel standard deviation allowed for nearly circular kernels 

and prevented skewed kernels from complicating the interpretation of the distribution.  Additionally, 

individual kernels were scaled either equally with ⅙ for the unweighted case, or based on their 

fraction of total precipitation amount for the weighted case.  This scaling method follows the same 

procedure as previously stated in the one-dimensional case.  It is can be seen that overlap between 

individual kernels (Figure 3-4a and 3-3c) begins to provide information on distribution of the 

isotope compositions but a composite of the individual kernels to a two-dimensional KDE provides 

the most valuable insight to data distributions (Figure 3-4b and 3-3d).  Similar to the one 

dimensional KDEs, the two dimensional KDEs show clear differences between the unweighted and 

weighted distributions which suggest incorporation of precipitation amounts can be important for 

accurate interpretations. 
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Figure 3-4: Individual two-dimensional Gaussian kernels, with x and y-directional standard 
deviation estimated using the Silverman method for bandwidth selection, are centered at the 
observations for unweighted (a) and weighted (c) subsets of full precipitation dataset.  Smooth two-
dimensional KDEs using Silverman method to estimate bandwidth for the unweighted (b) and 
weighted (d) dataset show distinct differences in the peak density and shape of distributions. 
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3.4.2.2. Full Precipitation Record 

One-dimensional KDEs and probability density histograms of the full precipitation record 

show the distribution of isotope compositions is not normally distributed but skewed towards more 

depleted values (Figure 3-5).  The bandwidth, estimated using the Silverman method (Silverman, 

1986), was calculated to be 1.31 for the unweighted version and 1.26 for the weighted version.  

Incorporation of precipitation amounts to the one-dimensional KDEs further pulls the distribution 

towards the more depleted range.  Additionally, the peak density decreases slightly, further 

increasing the overall spread of the distribution.  The δD KDEs (not shown) were constructed and 

showed similar tendencies.  The four-year composite KDEs suggest that highly depleted 
precipitation events (< -15‰ δ18O) occur less frequently and a large portion of events fall within a 

range of -8 to -2‰ for δ18O. 

 

 
Figure 3-5: One-dimensional unweighted (a) and weighted (b) kernel density estimates and 
probability density histograms for all observed δ18O values of precipitation for 2009-2012.  
Bandwidth selection for kernel density estimates was made using Silverman method.  Bin width 
selection for histograms was made using Freedman–Diaconis' method.  Both unweighted and 
weighted distributions of δ18O values of precipitation are negatively skewed; yet incorporation of 
precipitation amounts reduces the peak probability of the kernel density estimate and slightly shifts 
the distribution towards the more depleted range.   

 

Two-dimensional KDEs for the full precipitation record show similar trends as the one-

dimensional KDEs (Figure 3-6).  By looking at contours for 95, 90, 75, 50, 25, 10 and 5% quantiles, 

it is clear precipitation isotope compositions are skewed towards the more depleted values.  There 

appear to be larger differences in contour sizes when moving from 90% to 75% when compared to 
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moving from 25% to 10% which suggests the bivariate distributions have steeper peaks and higher 

densities near the mean.  Sample observations are grouped around the arithmetic mean of -7.66‰ 

for δ18O (-52.17‰ for δD) for the unweighted KDE and around the weighted mean of -8.33‰ for 

δ18O (-53.87‰ for δD) for the weighted KDE.  Differences between the unweighted and weighted 

bivariate KDEs are small but appear significant.  The weighted KDE rotates counterclockwise 

slightly and shifts further toward the more depleted range.  Additionally the peak density is stretched 

downward, away from the origin.  This adjustment of the weighted KDE suggests either large 

precipitation events are contributing more to the weighted KDE and/or small precipitation events 

are contributing less.  This would imply that unweighted KDEs are insufficient when large variations 

in precipitation amount are associated with observed isotope compositions. 

 

 
Figure 3-6: Two-dimensional unweighted (a) and weighted (b) kernel density estimates for all 
observed δ18O and δD values of precipitation for 2009 – 2012.  Bandwidth selection for kernel 
density estimates was made using Silverman method.  Contour intervals correspond to 95, 90, 75, 
50, 25, 10, and 5% inclusion quantiles.  LMWL calculated using precipitation amount weighted 
least squares and sample points are shown for reference.  Both two-dimensional KDEs show 
skewness towards more negative values. 
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3.4.3. Temporal Patterns of Isotopes in Precipitation 

The precipitation isotope composition record showed strong seasonal variability through all 

sub-annual integration periods with more depleted values in the cold season and less depleted values 

in the warm season (Figure 3-7).  As discussed previously, seasonal dependency of isotope 

compositions is due to a combination of variations in surface temperatures at the moisture source, 

variable temperatures at the precipitation site, and variations in evaporative fluxes throughout the 

year (Araguás-Araguás et al., 2000) and these variations become more pronounced at mid to high 

latitudes (IAEA, 1992).  The δD time series show similar trends (data not shown).  The sample time 

series contains large variability within the record and can be seen most prominently in the winter 

months of 2009-2010 and 2011-2012.  Overall the sample time series had a variation of 34.7‰.  

The daily time series also had large variability with a variation of 34.12‰.  Although the sample and 

daily time series appear nearly identical, it is important to note sample numbers were reduced from 

the sample to daily time series as numerous samples were collected on a given day and composed a 

single event.  Variability with the record decreases as the time series is integrated to weekly 

(27.68‰), monthly (18.97‰), and seasonally (7.68‰) amount weighted time series yet the seasonal 

patterns in isotope compositions remained preserved.  Annual amount weighted isotope 

compositions remained relatively constant for 2009-2012, with the most depleted year being 2009 (-

9.46‰ and -64.83‰ for δ18O and δD respectively). 
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Figure 3-7: Observed δ18O compositions in precipitation for SSHCZO for 2009 – 2012.  Sample 
compositions were integrated independently to daily, weekly, monthly, seasonally, and yearly amount 
weighted compositions from individual samples.  Major meteorological events are shown as grey bars 
and correspond to earliest observed snowfall (i), two-day snow event (ii), Tropical Storm Nicole (iii), 
Tropical Storm Lee (iv), record snow event (v), and Hurricane Sandy (vi).  Seasonal variability is 
preserved through all sub-annual integration periods.  Sample, daily, and weekly amount weighted 
time series contain large variability where as monthly, seasonally, and yearly amount weighted time 
series are relatively smooth. 

 

A closer investigation of the monthly δ18O time series revealed interesting temporal patterns in 

weighted KDEs with respect to precipitation type and origin (Figure 3-8).  Aggregation of 

observations by month and by precipitation type (rain, tropical storm, or snow) provided a large 

enough dataset to perform robust weighted KDE calculations.  As shown above (Figure 3-5), the 
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four-year composite weighted KDE is not normally distributed but is skewed towards more depleted 

values (right panel, Figure 3-8).  Decomposition of the four-year composite to monthly weighted 

KDEs showed the depleted skew is due to the aggregation of evolving monthly KDEs.  Each 

individual monthly KDE has relatively similar upper bounds on its distribution.  That is to say, each 

month experienced similarly less depleted or slightly enriched precipitation values.  On the other 

end, each month experienced different degrees of depleted precipitation and correspondingly 

different ranges in precipitation isotope compositions.  For example, February clearly had the largest 

range in observed isotopic compositions while August had the smallest range, yet they had similar 

upper bounds to the observed isotopic composition.   

This variable lower bound is mainly due to snowfall and the corresponding depleted signature.  

Weighted KDEs for snow for January, February, October and December all showed isotope 

compositions considerably more depleted than the weighted KDEs for rain for the same month.  

Aggregation of all snow weighted KDEs for the four observed years contributed a very small amount 

to the total weighted KDE compared to rain but established the majority of the tail behavior in the 

four-year composite KDE.  Interestingly, only one sample during November of each of the four years 

was classified as snow.  This is not unexpected, as the two October snow events were considered very 

unusual for central Pennsylvania.  The October 15, 2009 snowstorm was the earliest observed snow 

event for much of Pennsylvania and the October 29, 2011 event was relatively unexpected and caused 

substantial damage across the region.  With additional years of sampling, snow events in November 

would be expected. 
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Figure 3-8: Monthly weighted kernel density estimates of precipitation δ18O values at SSHCZO for 
2009 – 2012 and the 4-year composite weighed kernel density estimate.  KDEs were constructed 
using sample δ18O values and precipitation amounts.  The x-axis for each plot has been scaled to 
allow for clear interpretation of the shape of each KDE.  Each KDE for each precipitation type and 
month has been normalized by amount, therefore the area under all KDEs for a given month is equal 
to one.  Precipitation type was determined using LPM (see text) or by major tropical storm events 
(Nicole, Lee, or Sandy).  Sample number for rain, tropical storm, or snow KDE is listed at the top of 
each subplot.  Based on LPM measurement of “No Precipitation,” twenty samples were not included 
in KDEs.   

 

Tropical storms also appear to play a role in the monthly evolution of weighted KDEs.  As 

discussed previously, there were three significant storms of tropical origin during the four-year 

monitoring period.  Each of the three events, Tropical Storm Nicole, Hurricane Lee, and Hurricane 

Sandy, occurred during September or October.  An additional event, Hurricane Irene, occurred 

during the end of August 2011 but unfortunately, instrument malfunction prevented sample 

collection and therefore the data could not be included in these analyses.  From the monthly 

weighted KDEs (Figure 3-8), precipitation from tropical storms is slightly more depleted than the 

other rains during a given month.  This depletion of large precipitation events was likely due to the 

amount effect.  First detailed by Dansgaard (1964), as precipitation amount increases, the isotope 

composition becomes more depleted in heavy isotopes.  Closer investigation of samples from 
Hurricane Sandy (October 28-30, 2012) show δ18O compositions progressed from  -4.94‰ at 3:41 
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on Oct. 28 to -19.07‰ at 16:50 on Oct. 30.  The impacts of large tropical events on monthly 

weighted KDEs are significant and appear to pull isotope compositions towards more depleted 

values.   

3.4.4. LMWL Based on Different Integration Periods 

Construction of local meteoric water lines for SSHCZO was performed using sample (6 

hourly), daily, weekly, monthly, and seasonally amount weighted time series following a ordinary 

least squares regression procedure (IAEA, 1992).  Additionally a LMWL was constructed using 

sample isotope compositions and precipitation amounts following a weighted linear regression 

procedure (Hughes and Crawford, 2012).  The six different LMWLs provided slightly different 

interpretations of precipitation isotope compositions (Figure 3-9).  From the figure, it is clear that 

time integration shifts the LMWL to the left by increasing the intercept and slope.  Because the 

daily amount weighted time series is similar to the sample time series (Figure 3-7), both LMWLs 

have very similar slopes and intercepts and become indistinguishable.  Further integration begins to 

shift the LMWL until the seasonally amount weighted LMWL nearly overlaps the precipitation 

weighted LMWL.  This transition is demonstrated further by looking at the unweighted sample 

mean and the amount weighted sample mean for the full four-year record.  The unweighted sample 

mean falls directly on the sample and daily amount weighted LMWL while the weighted sample 

mean falls directly on the amount-weighted LMWL.   
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Figure 3-9: Close up comparison of local meteoric water lines for SSHCZO based on different 
integration periods.  Inset figure shows extents of observed isotopic composition of precipitation for 
2009-2012.  Groundwater ellipse encompassing 95% of observed groundwater isotope compositions 
is show in both figures for reference.  LMWLs defined by individual samples and daily amount 
weighted values fall directly on each other.  

 

The shift in sample LMWL to seasonally amount weighted LMWL is driven by low amount 

and low d-excess biases in the sample LMWL (Figure 3-10).  During the four-year observation 

period, sample d-excess (d-excess = δD - 8 x δ18O) varied from -40‰ to 20‰.   This variation was 

constrained to the small amount events.  As precipitation amounts increased over 5 mm, d-excess 

values remained near -10‰.  These extreme low d-excess samples contributed dramatically to the 

lower slopes and intercepts seen in the sample and daily amount weighted LMWLs.  Integration to 

longer time periods wipes out the influence of these small events and results in LMWLs similar to 

the precipitation amount weighted LMWL.  When using individual samples without including 

precipitation amounts to define the LMWL, researchers are often unknowingly, giving equal 

importance to each precipitation sample.  For some applications this could potentially be useful but 

for hydrologic applications where researchers are interested in hydrologic response to precipitation, 

this may not be the correct approach. 
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Figure 3-10: Local meteoric water line for SSHCZO (a) defined using least squares regression of 
individual samples (black line) and amount weighted least squares regression of individual samples 
(orange line).  Comparison of d-excess values and precipitation amount (b) show large negative 
values associated only with small precipitation amounts.  Colors of scatter points correspond to d-
excess values, where lighter colors are more negative and darker colors are positive d-excess values. 

 

Table 3-2 shows the sample size, slope, intercept and associated statistics for each LMWL.  

Although there nearly twice as many observations for the sample time series compared to the daily 

amount weighted time series, the slopes and intercepts are nearly equal.  The sample time series has 

lower standard deviations for slope and intercept but a lower R2 value.  T-tests for differences in 

slope between time series and precipitation amount weighted LMWL showed that both the sample 

and daily amount weighted line have significantly different slopes at all significance levels.  Moving 

to weekly amount weighted LMWL, both the slope and intercept increased along with the standard 

deviations.  The t-test showed the slope of the weekly LMWL is significantly different from the 

precipitation amount weight LMWL at the 55% level, a level that typically is rejected.  This pattern 

continues for monthly and seasonally amount weighted LMWLs, where slopes and intercepts 

increase, yet the t-scores are relatively low.  This suggests using sample or daily amount weighted 

values to construct a LMWL will result in a statistically different LMWL than an amount weighted 

LMWL.  Researchers concerned with precipitation impacts and interactions with other hydrologic 

pools should carefully define the LMWL for the specific question. 
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Table 3-2: Statistics of local meteoric water lines based on different integration periods and the 
amount-weighted least squares regression.  T-test significance is for the difference in slope between 
the amount-weighted least squares regression and a given integration period.   

Integration 
Interval N Slope ± σm Intercept ± σb R2 T-score 

T-test 
Significance 

Sample 456 8.02 ± 0.07 9.27 ± 0.65 0.9694 4.13 0.00 
Day 231 8.02 ± 0.09 9.31 ± 0.90 0.9700 3.15 0.00 

Week 116 8.28 ± 0.12 12.67 ± 1.13 0.9757 0.13 0.55 
Month 44 8.40 ± 0.18 14.81 ± 1.62 0.9801 -0.50 0.45 
Season 16 8.12 ± 0.28 13.36 ± 2.28 0.9837 0.39 0.35 

Amount 
Weighted 456 8.30 ± 0.03 15.24 ± 0.52 0.9821 - - 

 

In order to clearly visualize this LMWL shift, it was necessary to change the scale dramatically 

since precipitation isotope compositions inherently have a very large range.  To appreciate the scale 

difference, 95% confidence ellipses for precipitation and groundwater observations at SSHCZO were 

included for reference in both the main figure as well as the inset figure (Figure 3-9).  It is clear the 

degree of change in LMWLs slope and intercept is relatively small in comparison of the entire 

precipitation data yet it can play an important role in interpreting isotopic data.  Hydrologic pools 

(soil water, stream water, groundwater, etc.) act as vessels for mixing of water with different isotopic 

compositions.  This mixing is naturally performing a volume-weighted average, which is dependent 

on a variety of factors including storage volume, residence time, flow rates and others.  When these 

pools are plotted along with the LMWL, the only hydrologic pool not being weighted volumetrically 

is the high-resolution precipitation samples.  Therefore, comparisons between precipitation and 

other hydrologic pools, without performing amount-weighting operations, could lead to flawed 

results and interpretations.   

3.5. Summary & Conclusion 

Through high frequency sampling of precipitation and other meteorological data, numerous 

temporal patterns have become evident in the isotopic record of precipitation at the SSHCZO.  

Closer investigation of kernel density estimates and various time series constructed using different 

integration periods have provided the following conclusions: 
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1. Univariate and bivariate kernel density estimates of precipitation clearly demonstrate that 

isotope compositions of precipitation are not normally distributed but rather, are skewed 

towards more depleted values. 

2. Precipitation amount weighted kernel density estimates differ from unweighted kernel density 

estimates for both the univariate and bivariate scenarios.  Application of unweighted versus 

weighted kernel density estimates should be considered when research questions are 

attempting to answer hydrologic processes. 

3. Integration of samples to daily, weekly, monthly, or seasonally amount weighted time series 

reduces the variability of the record yet preserves the seasonal pattern of more depleted values 

in the cold season and less depleted values in the warm season. 

4. The shape of monthly amount weighted kernel density estimates is governed by snow and 

tropical storms, both of which impose more depleted compositions to the distributions.  

Although snow and tropical storm distributions are distinct from typical monthly rain 

distributions, they contribute little to the four-year composite kernel density estimate. 

5. Distinct local meteoric water lines can be constructed from various integrated time series.  

Use of appropriate LMWL must be decided prior to analysis. 

6. High-resolution sampling captures precipitation events, which contain low d-excess values 

and low amounts.  These events potentially bias the local meteoric water line towards a more 

evaporative signal. 

 

Although much has been gained from this study, there remain unanswered questions regarding 

precipitation isotopic composition at SSHCZO and in the region.  To fully understand the long-

term temporal patterns of isotopes in precipitation, additional sampling must continue at SSHCZO.  

Daily or weekly bulk sampling would be sufficient at capturing sub-seasonal variability of standard 

events in central Pennsylvania.  Prior to unique events such as tropical storms or large snow events, 

high-resolution sampling could continue to capture intrastorm variability.  Additionally, cross 

comparisons of precipitation patterns at nearby catchments would validate much of the work 

completed.  Extension of monitoring of stable isotopes in precipitation to other critical zone 

observatories could further test the findings of this work. 
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Chapter 4.  

Validation of Precipitation Isotope Compositions from an 
Atmospheric General Circulation Model Using SSHCZO 
Observations  

This chapter will be submitted for publication with co-authors K. Yoshimura and C. J. Duffy.   

4.1. Abstract 

Datasets of stable isotope compositions in precipitation have been compiled and processed 

over the past decades to develop large-scale regionally and globally distributed maps of isotopic 

compositions.  Often these data products are then applied to estimate isotopic compositions of 

precipitation in ungagged basins.  This research was intended to determine the feasibility of 

applying Global and Regional Atmospheric General Circulation Models to determine the long-

term hydrologic forcing and isotope composition of precipitation at the watershed scale.  

Specifically four-years of observations at the Susquehanna-Shale Hills Critical Zone Observatory 

(SSHCZO) was used to determine the accuracy and precision of three separately modeled time 

series of isotope composition of precipitation.  Comparisons were performed using linear 

regressions and singular spectrum analysis of daily, weekly and monthly amount weighted isotope 

compositions.  Results show all time-integrated simulations accurately predict seasonal timing of 

isotope compositions over the four-year record yet slightly under predicts the amplitude of the 

seasonal variation.  The monthly amount weighted time series performed modestly better than 

the weekly or daily amount weighted values.  Singular spectrum analysis on the global and 

regional models showed the importance of low frequency cycles and the annual cycle and its 

harmonics.  Singular spectrum analysis on the SSHCZO record reinforced the importance of the 

annual cycle and its harmonics.  Reconstruction of modeled 32-year weekly amount weighted 

time series and 4-year SSHCZO weekly amount weighted time series accounted for 51.78% and 

43.44% of the variability respectively, suggesting much of the record is inherent noise.  Further 

work is required to validate modeled isotope compositions in precipitation at other spatial 

locations around the region as well as possible long-term trends at SSHCZO. 
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4.2. Introduction 

Recent advances in computing power and general circulation models (GCM) have given 

researchers and hydrologists unprecedented access to high-resolution reanalysis and forecasting 

data products.  With improved resolution and accuracy, scientists now have the opportunity to 

implement these meteorological datasets as hydrologic forcing for medium and long term 

distributed hydrologic models over a variety of scales.  Additionally advances in isotope age 

modeling are now providing researchers estimates of the age of waters within small to medium 

sized basins.  For the first time, isotope-incorporated atmospheric general circulation models can 

be combined with isotope age modeling in distributed hydrologic models to determine the age of 

water anywhere in space or time within a given basin.  The potential utility of this tool is 

profound.  For example researchers can now begin to understand the timescales of hydrologic 

turnover and residence times for basins of any size and easily relate isotopic age to a variety of 

physical variables or fluxes calculated by the distributed model.  Managers can now also begin to 

understand the expected lag between implementation of policy and observation of results.  The 

public and other stakeholders can now be educated on the length of time a parcel of water takes 

to move from a point in a basin to its outlet, a concept previously difficult to describe. 

While these opportunities are incredibly exciting and useful to our understanding of 

distributed hydrology, it is important to understand the data products being used and their 

potential limitations before moving forward.  This study is intended to analyze the validity of an 

isotope-incorporated atmospheric general circulation model by using observations at one location 

in space.  The two main products this study are a global GCM and its dynamically downscaled 

regional model both capable of describing stable isotopes in precipitation and their distribution 

through time and space.  Additionally a common empirically based product is investigated as a 

reference.  All simulations are compared against observations at the Susquehanna-Shale Hills 

Critical Zone Observatory.  The objectives of this study are to determine the accuracy of each 

simulation through three specific time steps: daily, weekly, and monthly values.  Also for the first 

time, model time series are analyzed using singular spectrum analysis to determine the temporal 

structures and the associated major components of each record. 
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4.3. Data  

4.3.1. Isotope-Incorporated Atmospheric General Circulation Models 

4.3.1.1. Global Spectrum Model (IsoGSM) 

Time series from two closely related isotope-incorporated atmospheric general circulation 

models (GCM) were investigated for this study.  The global atmospheric GCM is referred to as 

IsoGSM for isotope-incorporated global spectrum model and provides 200 km x 200 km spatial 

resolution and six-hour temporal resolution over the entire globe.  This physically based model 

performs numerical reanalysis of atmospheric and meteorological processes (Yoshimura and 

Kanamitsu, 2008) and is based on NCEP’s Medium-Range Forecast Model (Caplan et al., 

1997).  Liquid and gaseous forms of HDO and H2
18O were incorporated to GSM as passive 

tracers, which are transported between cells via atmospheric circulation and sub-grid processes.  

Isotopic species evolution occurs during evaporation and condensation based on Rayleigh 

distillation.  Equilibrium fractionation was assumed to occur during all phase transitions except 

during evaporation from a free surface, condensation of vapor to ice in supersaturated conditions, 

or during evaporation of liquid precipitation into dry air mass (Yoshimura and Kanamitsu, 2008; 

Yoshimura et al., 2008).  A 32-year record (1979-2010) for the grid cell (Lon. = 78.75°W, Lat. = 

40.95°E) containing SSHCZO was extracted for analysis (Figure 4-1 ).  IsoGSM provides 

relatively computationally inexpensive distributed data for isotopes in precipitation.   

4.3.1.2. Regional Spectrum Model (IsoRSM) 

The regional atmospheric GCM is referred to as IsoRSM for isotope-incorporated regional 

spectrum model and provides 10 km x 10 km spatial resolution and one-hour temporal resolution.  

The regional model is developed through a dynamical downscaling technique that applies the 

results of the global simulation and a spectral nudging technique to produce the higher resolution 

data.  For this step, a modification of scale-selective bias correction developed by Kanamaru and 

Kanamitsu (2007) was performed.  The regional spectrum model then utilizes the identical 

physical parameters as the global spectrum model.  Surface pressures, temperatures, humidity, an 

wind fields were recalculated to account for fine-scale topography and higher-resolution vertical 

coordinates.  Large-scale weather and circulation patterns were incorporated to account for 

processes larger than the 200 km x 200 km boundary.  This process resolves any potential edge 
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effects from the simulation (Yoshimura and Kanamitsu, 2008; Yoshimura et al., 2008).  For this 

study, a 32-year (1980-2011) record for the grid cell containing SSHCZO was extracted for 

analysis (Figure 4-1).  Compared to IsoGSM, IsoRSM provides computationally expensive 

distributed data for isotopes in precipitation.  

4.3.2. Online Isotopes in Precipitation Calculator (OIPC) 

A popular tool to predict isotope compositions of precipitation at ungagged locations is the 

Online Isotopes in Precipitation Calculator (OIPC).  The OIPC was used in this comparison as a 

baseline for understanding the seasonal patterns of isotopes in precipitation and acts a first cut to 

development of spatially distributed maps of isotopes in precipitation.  The OIPC uses an 

empirical regression incorporating latitude, elevation, and a detrending technique to establish 

isotope compositions in precipitation over the entire global on monthly time steps (Bowen and 

Wilkinson, 2002; Bowen and Revenaugh, 2003; Bowen et al., 2005).  The detrending technique 

follows Waliser and Gautier (1993) by transforming monitoring station latitudes into effective 

monthly latitudes use the globally averaged intertropical convergence zone for a given month.  

The OIPC utilizes the IAEA’s Global Network of Isotopes in Precipitation and the USGS’s 5-

minute resolution DEM to develop the spatially distributed isoscapes.  To monitor the OIPC 

through time, replicates of the δ18O and δD monthly values for the SSHCZO location were 

concatenated to the required length.   

4.3.3. Susquehanna-Shale Hills Critical Zone Observatory 

Precipitation samples were collected at the Susquehanna-Shale Hills Critical Zone 

Observatory (SSHCZ) for comparison against the models.  Located in central Pennsylvania, the 

SSHCZO is a small, forested catchment characteristic of the low-laying shale hills in the Ridge 

and Valley Physiographic Province of eastern United States (Figure 4-1).  Elevation of the 

catchment varies from 310 m at the ridge top to 256 m at the stream outlet.  A total of 456 

precipitation samples were collected Jan. 14, 2009 to Dec. 20, 2012 on an event basis using an 

automatic precipitation sampler (model: NSA 181/S, Eigenbrodt GmbH & Co., Königsmoor, 

Germany) located in a clearing on the ridge top.  To capture intra-storm variability, precipitation 

was collected for the first 30-minutes of a storm followed by three 6-hour intervals.  All liquid 
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water samples were collected soon after events and stored in 30 mL amber glass vials with cone-

lined caps to prevent evaporation.  Sample bottles contained little or no headspace and were 

stored in a cool location to minimize water-air exchange.  

Water samples were analyzed using laser absorption spectrometer (DT-100 Liquid Water 

Isotope Analyzer, Los Gatos Research, Inc., Mountain View, CA) following the IAEA Standard 

Operating Procedure (Newman et al., 2008).  The analytical precision of the instrument is 0.1‰ 

and 0.8‰ for oxygen-18 and deuterium, respectively (Lis et al., 2008).  The isotopic composition 

of the water was reported as a δ-value relative to Vienna Standard Mean Ocean Water (V-

SMOW): 

   !!(!"#$%&) =
!!

!!"#$%
− 1   ×  1000   (1)  

where R is the ratio of deuterium (2H) to hydrogen (H) or 18O to 16O in the unknown (X) or 

Vienna Standard Mean Ocean Water (V-SMOW).  

Before any analysis, gaps in the SSHCZO record were filled using weekly averages.  This 

was performed by first establishing the full precipitation amount record for 2009-2012.  Each 

week of the year was indexed from 1-52 and a corresponding average weekly amount weighted 

isotope value was calculated.  During the four-year record, two separate indexed weeks contained 

no observed isotope compositions.  In these cases, the isotope composition of the previous week 

was assigned to the index without an observation.  A comparison of observed events and missed 

events was performed using the full precipitation amount record for 2009-2012.  Days without an 

observed isotopic composition were filled using the weekly amount weighted value based on the 

index value.  Isotope values for days where no precipitation event occurred were filled with zeros.  
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Figure 4-1: Location of SSHCZO (green point) in relation to IsoGSM grid cell (pink square) 
and IsoRSM domain (black rectangle).  IsoRSM domain consisted of 129 grid cells east-west and 
120 grid cells north-south.  Blue shaded regions correspond to IsoRSM simulated precipitation 
isotope compositions for an arbitrary day for demonstration purposes only. 

4.4. Methods 

4.4.1. Time Integration  

Time series of varying temporal resolution provide varying degrees of information about the 

environmental processes in question.  High-resolution (daily) values provide insight to 

atmospheric or hydrological processes, which occur over periods of days to weeks.  On the other 

hand, monthly values can provide insight to seasonal dynamics of water storages.  Because the 

data records contain a wealth of information through various time scales, this study is intended to 

assess the quality of these data at different time integration intervals.  In order to more fully 
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understand the temporal structure of the models and the SSCHZO record, each time series was 

time averaged to daily, weekly, or monthly amount weighted values using the following equation: 

   !! =
!!!!!

!!!

!!!
!!!

   (2)  

where δT is the amount-weighted precipitation value, Pi represents the amount (depth) of 

precipitation in an event, δi is the isotope composition of an event, and n is the number of events 

in the time period considered.  The time integration procedure was not preformed on the OIPC 

time series, as monthly values were the highest resolution data available. 

4.4.2. Regression Procedures 

Models were compared against the SSHCZO δ18O and δD values using linear regressions 

and Nash-Sutcliffe coefficients on daily, weekly, and monthly amount weighted isotopic 

compositions.  The IsoGSM and IsoRSM models were compared for daily, weekly, and monthly 

amount weighted values while the OIPC was only compared for the monthly values.  IsoGSM 

was compared for only 2009 and 2010 because of limited length of IsoGSM record.  IsoRSM and 

OIPC were compared for 2009 through 2011.  Model values were compared against observations 

only when observations occurred.  In other words, if in a certain time step a model predicted a 

precipitation event but the filled SSHCZO record did not contain an event, the model value is 

left out of the regression.  For time steps when the SSHCZO record contained an event and the 

model did not, model values of zero were included in the regression.  This procedure gives a rigid 

account of performance with respect to the observed record. 

Linear regressions provide information towards the general performance of each model.  A 

slope of one refers to perfect agreement between model and observation.  A slope less than one 

suggests under prediction of isotopic range for the model while a slope greater than one suggests 

an over prediction of isotopic range.  A larger intercept suggests a bias towards less depleted 

compositions while a smaller intercept suggests a bias towards more depleted values.  R-squared 

values were also calculated to estimate the overall variability of the model-observation regression.  

R-squared values near one suggest a strong linear relationship (not necessarily strong model-

observation agreement), while values near zero suggest poor linear relationship (not necessarily 

poor model-observation agreement). 
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To better understand the overall model efficiency Nash-Sutcliffe coefficients for each 

comparison were calculated.  The Nash-Sutcliffe efficiency coefficient (NSE) compares the 

residual noise to the variance of the observations using the following equation: 

   !"# = 1 −
(!! − !!)!

(!! − !!)!
   (2)  

where δO
 is the observed isotopic value, δM is the modeled isotopic value, and !! is the arithmetic 

average observed isotopic value (Nash and Sutcliffe, 1970).  NSE values equal to one suggest 

perfect match between modeled and observed isotopic composition.  Values less than zero suggest 

the model does no better than the observed mean at predicting isotopic compositions.   

4.4.3. Singular Spectrum Analysis (SSA) 

4.4.3.1. SSA Background and Motivation for Use 

To determine the temporal structure of IsoGSM and IsoRSM, singular spectrum analysis 

(SSA) was performed on the 32-year daily, weekly, and monthly amount weighted δ18O and δD 

time series for both IsoGSM and IsoRSM.  Here, temporal structure refers to important trends 

or oscillations within the record as well as the structure of the residual noise.  The results were 

then compared against SSA of daily and weekly amount weighted δ18O and δD for SSHCZO.  In 

all, SSA was performed on a total of 16 time series.  Note the records for IsoGSM (1979-2010), 

IsoRSM (1980-2011), and SSHCZO (2009-2012) do not completely overlap.  SSA was 

performed on the longest available record in order to capture the longest cycles imbedded within 

the time series.  Pioneered by the work of Broomhead and King (1986), SSA is a data-based 

signal processing method which deconstructs a time series into its three main components: trend, 

signal and noise.  SSA has numerous advantages over other time series analysis tools, mainly it is 

not limited to sines and cosines and its basis functions are data-adaptive, empirical, and 

orthogonal.  In other words, SSA efficiently determines the fewest number of components to 

capture the most variance.  It is our intent to use SSA to understand the important components 

within each model time series and compare them to the important components of the SSHCZO 

observations.  This comparison should inform us on the efficiency of model predictions as well as 

where models need improvement.   
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4.4.3.2. SSA Procedure 

There are four steps involved in SSA: embedding, spectral decomposition, principle 

component computation, and reconstruction.  Before we begin let’s assume we have a time series 

! = (!!,⋯ , !!), with no gaps.  The first step, embedding, constructs a trajectory matrix from 

the original time series: 

   !! =

!! !! !! ⋯ !!
!! !! !! ⋯ !!!!
!! !! !! ⋯ !!!!
⋮ ⋮ ⋮ ⋱ ⋮
!! !!!! !!!! ⋯ !!

   (3)  

where L is the window length and 2 < ! < !
!
 .  The second step performs singular value 

decomposition on the trajectory matrix.  This is done by finding the eigenvectors (!!) of the 

lagged covariance matrix ! = !!!!′, and sorting the corresponding eigenvalues (λi) in descending 

order.  In the third step, the eigenvectors are projected onto the original time record to produce 

the principle components.  The fourth step consists of reconstructing the signal by convolving 

one or more of the principle components with the corresponding eigenvectors (Vautard et al., 

1992; Elsner and Tsonis, 1996; Golyandina et al., 2001).  

The most important parameter for SSA is the window length, as it determines the longest 

cycle that can be resolved within the record.  Typically window lengths vary between 10-40% of 

the series length.  For this study, a variety of window lengths were investigated and lengths of 10 

years were chosen for IsoGSM and IsoRSM and 2 years for SSHCZO.  For the daily time series 

this became a window length of 3650 (10-years) or 730 (2-years), for the weekly time series the 

window length was 520 (10-years) or 104 (2-years), and for the monthly time series the window 

length was 120.  The lengths were chosen to balance number and resolution of major oscillatory 

components.  The dominant frequency of each eigenvector w determined by performing fast 

Fourier transforms and extracting the most significant frequency.  This procedure is most 

effective for well-resolved eigenvectors, which have clear oscillatory patterns.  Statistically 

significant eigenvalues were determined by applying a red noise filter to the spectrum.  This 

procedure was performed manually on each eigenspectrum to establish a rough cutoff of 

significant components from the noise.  Confidence bounds for the noise spectrum were 

calculated to correspond to 2.5 and 97.5%.  Values which fell above the upper confidence bounds 

were considered statistically significant components of the signal while values that fell below the 

lower confidence bounds were contributed very little to the overall variance of the record.  Values 
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within the confidence bounds correspond to the red noise spectrum.  Reconstructions were 

performed with significant components of the record as well as manually chosen components, 

which were near the significance level.  

4.5. Results & Discussion 

Daily, weekly, and monthly amount weighted δ18O time series for IsoGSM, IsoRSM, and 

SSHCZO showed varying degrees of variability (Figure 4-2), with more variability in the daily 

record and less variability in the monthly record.  Similar patterns were evident for δD values 

through time.  All time series showed similar patterns of more depleted values in the winter and 

less depleted values in the summer.  In general, IsoGSM had less depleted values compared to 

SSHCZO while IsoRSM had more depleted values.  The OIPC values matched relatively well 

with SSHCZO but contained no interannual variability as the 12 month record was repeated for 

the 34 years.  The long-term averages of each time series showed clear seasonality with the 

SSHCZO containing the most variability.  It is safe to assume that with a longer observation 

record, much of the variability in the long-term average of SSHCZO would be reduced. 

The daily time series for IsoGSM, IsoRSM, and SSHCZO contained numerous values 

equal to zero, which could pose a problem as they represented days with no observed precipitation 

yet contain numeric values.  Physically speaking, an isotopic composition equal to zero means the 

concentration of rare isotopes in the sample is equal to that of ocean water.  Artificially assigning 

isotope compositions of zero to days without precipitation events potentially introduces an error, 

which could propagate through the analysis.  Zeros were also observed in the weekly amount 

weighted δ18O time series, but were much less frequent, and integration to monthly time series 

completely removed the zero observations.  
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Figure 4-2: Daily, weekly, and monthly amount weighted time series for IsoGSM (light grey), 
IsoRSM (dark grey), OIPC (green), and SSHCZO observations (blue).  Long-term averages are 
shown for each time period (right panels). 

4.5.1. Regression Results 

Comparisons of δ18O values for each simulation against the observations at SSHCZO shed 

light on the efficiency of each model over various time steps (Figure 4-3). Daily amount weighted 

values for IsoGSM and IsoRSM did a similar job at predicting observed isotope compositions.  

R-squared values and regression parameters are nearly identical for models at the daily time step.  

Neither model adequately captured the range of isotopic values seen in the observed record, a fact 

demonstrated by the regression slopes being less than one.  Nash-Sutcliffe efficiency coefficients 

suggest the IsoGSM (NSE = 0.3037) better predicts isotope composition when compared to 

IsoRSM (NSE = 0.1797), but neither provide strong representations of daily amount weighted 

observed compositions at SSHCZO.  Comparison of δD values was also performed and showed 

similar trends. 
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Figure 4-3: Comparison of IsoRSM (blue), IsoGSM (pink), and OIPC (green) for daily, weekly 
and monthly amount weighted δ18O values.  The OIPC was compared for the monthly time 
series only.  One-to-one line (black) is shown for reference. 

 

Integration to the weekly time step differentiates the two models slightly (Figure 4-3).  

Using the slope of the linear regressions to understand performance, IsoGSM better captured the 

isotopic range when compared to IsoGSM.  But at the same time, IsoGSM appears to have 

gained a bias towards less depleted values, evident through the increased intercept of the IsoGSM 

weekly regression.  The likely cause of the less depleted bias is the numerous composition equal to 

zero (Figure 4-2) and thus pulling the regression upward.  The weekly record for IsoRSM 

contained less zeros and therefore did not have a similar bias as IsoGSM.  NSE values for 

IsoGSM (NSE = -0.0806) and IsoRSM (NSE = 0.2604) suggest the weekly amount weighted 

models do not improve the prediction of isotope compositions.  Interestingly based on the NSE 

value, the weekly integrated IsoGSM does no better predicting isotope compositions than the 

average observed value.   

Further integration to the monthly time step improves the model performance over the daily 

or weekly amount weighted values (Figure 4-3).  Overall the IsoRSM model had the highest 

slope and thus did the best at capturing the isotopic range observed.  Further the R-squared value 

of the IsoRSM model was relatively large suggesting a strong linear relationship between the 

model and the observations.  NSE values further supported the IsoRSM as the strongest model 

with a NSE value of 0.5792 compared to IsoGSM value of 0.2807 and OIPC value of 0.3882.  

Table 4-1 shows summary statistics for each comparison.  From these comparisons the monthly 

amount weighted IsoRSM values performed the strongest when compared to the remainder of 

the models. 
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Table 4-1: Summary statistics for comparisons of SSHCZO daily, weekly, and monthly amount 
weighted values against IsoRSM, IsoGSM, and OIPC. 

Integration 
Period 

Simulation vs. 
CZO Slope Intercept R2 

Nash-
Sutcliffe 

Day IsoRSM 0.558 -5.325 0.391 0.1797 
IsoGSM 0.568 -4.906 0.392 0.3037 

Week IsoRSM 0.525 -5.422 0.411 0.2604 
IsoGSM 0.620 -0.197 0.365 -0.0806 

Month 
IsoRSM 0.693 -4.212 0.810 0.5792 
IsoGSM 0.670 -0.341 0.762 0.2807 

OIPC 0.583 -4.625 0.492 0.3882 

4.5.2. SSA Results 

4.5.2.1. IsoGSM 

The normalized eigenvalue spectrum for the 32-year IsoGSM record (1979-2010) showed 

important oscillatory components imbedded within the record (Figure 4-4).  The red noise 

spectrum was also shown with its associated 95% confidence intervals.  Eigenvalues above the 

95% confidence intervals were considered significant components of the signal while the 

remaining eigenvalues made up the noise.  With a 10-year window, numerous significant 

components were extracted from the daily, weekly, and monthly time series for both δ18O and 

δD.  For the daily record, significant values were found for the 10-year, 2.5-year, 2-year, 1-year, 

0.5-year, 0.37-year, 0.25-year, and 19-day cycles.  Additional components were found to be 

significant but either fell on or just above the confidence bounds of the noise spectrum or were 

high-frequency and considered less important to the overall spectrum.  These high frequency 

components represented cycles on the order of days or weeks.  Each significant eigenvector shown 

in Figure 4-4 corresponded to a pair of eigenvalues.  Similar eigenvalues were found for δ18O and 

δD with the exception of high frequency components considered to be less important.  For both 

spectrums, the 1-year and 0.5-year cycles represented the most variance within the record 

corresponding to approximately 22% of the variance.  Eigenvalues which corresponded to 0.5 and 

0.25-year cycles represent harmonics of the annual while the 10, 2.5, and 2-year cycles account 

for interannual variability in the record. 

Integration to the weekly amount weighted time series reduced the total number and 

number of significant eigenvalues (Figure 4-4).  With the 10-year window, significant values were 
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found at the 10-year, 1-year, 0.8-year, 0.5-year, and 0.25-year as well as at higher frequencies, 

which again were considered less important to the overall spectrum.  The same significant 
eigenvalues were found to be significant for both δ18O and δD.  Again the annual and its 

harmonics were the strongest eigenvalues evident within the record and accounted for 

approximately 22% of the variance. 

Further integration to monthly amount weighted time series further reduced the number of 

eigenvalues (Figure 4-4).  The only significant eigenvalue pair found using the 10-year window 

was the annual cycle with the 10-year, 2-year, and 0.5-year falling just below the confidence 

bounds of the red noise spectrum.  Combined, the annual eigenvalues accounted for 

approximately 30% of the variance within the monthly amount weighted time series. 

 
Figure 4-4: Eigenspectrum for daily, weekly, and monthly amount weighed δ18O (blue) and δD 
(red) values of IsoGSM.  Colored circles represent significant paired oscillatory or trend 
components.  Solid line represents red noise floor and dashed lines correspond to 97.5 and 2.5% 
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confidence bounds.  The embedding dimension was 10 years for each time series (3650 days, 520 
weeks, or 120 months). 

 

The significant eigenvectors, from the eigenspectrums, had clear sinusoidal shapes, which 

further validated their importance to describing each record (Figure 4-5).  The eigenvectors, 

which represented the annual cycle, had the largest variance for each respective record.  Variance 

of annual cycles increased from daily to weekly to monthly time series.  This increase in 

proportion of variance was due to the decreasing number of eigenvectors associated with each 

time series.  Because the monthly time series had 120 eigenvectors and the daily time series had 

3650 eigenvectors, and the sum of the variances from all eigenvectors must equal one, each 

eigenvector from the monthly time series must account for proportionally more variance.  

Additionally the annual eigenvectors displayed no amplitude modulation throughout their series, 

suggesting they represented the pure seasonal components of the record.  The near significant 

components of the monthly time series of IsoGSM were shown in grey (Figure 4-5).  It is clear 

they contained important aspects of the record but have not been fully resolved by the SSA 

procedure.  This poor resolution was likely due to the limited number of points within the record.  

With a longer monthly record, it is likely the near significant eigenvectors would be resolved and 

become significant components of the record.  
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Figure 4-5: Significant eigenvectors from SSA analysis of daily, weekly, and monthly IsoGSM 
time series.  The first five pairs of eigenvectors represented the largest portion of variance for daily 
and weekly time series.  Only the first pair of eigenvectors was considered significant for the 
monthly time series the remainder of the eigenvectors were near significant (grey). 

 

4.5.2.2. IsoRSM 

Eigenspectrum for the regional spectrum model, IsoRSM (Figure 4-6), showed similar 
patterns as the eigenspectrum for IsoGSM.  With respect to the daily δ18O time series, significant 

eigenvalues were found at the 10-year, 2.5-year, 2-year, 1-year, 0.5-year, 0.3-year, and 0.25-year 

frequencies.  Numerous eigenvalues fell just above the red noise significance level and represented 
cycles with frequencies less than a month.  Similar eigenvalues were found for the δD time series.  

Similar to the IsoGSM eigenspectrum, time integration to weekly amount weighted values 

reduced the number of significant eigenvalues observed.  For both the δ18O and δD time series, 

eigenvalues representing the 10-year, 2.75-year, 1.75-year, 1-year, 0.8-year, and 0.5-year 

frequencies were found to be significant.  Time integration to monthly amount weighted values 

further reduced the number of significant eigenvalues to the 1-year, 0.5-year, and 4-month 

frequencies.  With time integration, significant eigenvalues of the daily and weekly time series 

become less significant in the monthly time series.  As discussed above, the reduced significance 

of major eigenvectors is due to the decreased record length and poorer resolution of eigenvectors. 
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Figure 4-6: Eigenspectrum for daily, weekly, and monthly amount weighed δ18O (blue) and δD 
(red) time series of IsoRSM.  Colored circles represent significant paired oscillatory or trend 
components.  Solid line represents red noise floor and dashed lines correspond to 97.5 and 2.5% 
confidence bounds.  The embedding dimension was 10 years for each time series (3650 days, 520 
weeks, or 120 months). 

 

Significant eigenvectors for IsoRSM (Figure 4-7) were similar to the significant eigenvectors 

of IsoGSM (Figure 4-5).  All eigenvectors falling above the confidence levels of the red noise 

spectrum were well resolved and clearly contained sinusoidal oscillations.  Due to the large 

number of eigenvalues of the daily time series, each significant eigenvector represents only a small 

portion of the overall record variance for reasons discussed above.  On the other hand, significant 

eigenvectors (1-year, 0.5-year, and 0.3-year) for the monthly time series accounted for 

substantially more variance.  Monthly eigenvectors, which fell just below the red noise spectrum 
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confidence levels (2.5-year, 1.7-year, and 0.8-year), were poorly resolved but were considered 

significant for the daily and weekly time series.  This suggests that with a longer record, better 

resolution would improve the importance of these cycles. 

 

 
Figure 4-7: Significant eigenvectors from SSA analysis of daily, weekly, and monthly δ18O 
IsoRSM time series. The first five pairs of eigenvectors represented the largest portion of variance 
for daily and weekly time series.  The first three pairs of eigenvectors were considered significant 
for the monthly time series.  Eigenvectors in grey were not statistically different from the red 
noise spectrum but considered important components of the time series. 

4.5.2.3. SSHCZO 

Eigenspectrum for daily and weekly time series of the SSHCZO (Figure 4-8) contained a 

fewer number of significant eigenvalues than the eigenspectrum for IsoGSM or IsoRSM.  From 

the models’ longer-term records, significant frequencies were found for the annual, semi-annual 

and quarterly cycles for all time integration periods.  For daily and weekly amount weighted time 

series, low frequency components were also found to be significant in the models.  The question 

then becomes do these significant oscillations exist in the observed isotope record or are they an 

artifact of the modeling procedure.  While it is difficult to definitively answer the latter question, 

investigation of the eigenspectrum for SSHCZO can shed light into which significant frequencies 

exist in the natural record.  From the daily eigenspectrum (Figure 4-7), the 2-year and 1-year 
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eigenvalues contribute the most to the overall record’s variance.  Other important frequencies 

appeared to be the 26-day, 12-day, and 0.3-year.  Interestingly, the 5-year cycle appears in the 

δ18O time series but not the δD.  Because the windowing length was set as 2-years, the maximum 

frequency which could be resolved was 2-years, any frequencies longer than 2-years are not 

considered well resolved.  For the weekly time series, the 1-year, 0.5-year, and 0.3-year 

frequencies were important with other high frequency components contributing to the overall 

variance.  This suggests the annual, semi-annual, and 4-month cycles are relatively important to 

the overall record.  With a longer time series, it would be possible to extract additional low 

frequency components from the record. 

 

 
Figure 4-8: Eigenspectrum for daily and weekly amount weighted δ18O (blue) and δD (red) time 
series of SSHCZO.  Colored circles represent significant paired oscillatory or trend components.  
Eigenvalues labeled with star (*) correspond are single eigenvectors and not part of a pair.  Solid 
line represents red noise spectrum and dashed lines correspond to 97.5 and 2.5% confidence 
bounds.  The embedding dimension was 2 years for each time series (730 days or 104 weeks). 

 

Major eigenvectors for SSHCZO show clear sinusoidal patterns (Figure 4-9).  The annual 

eigenvectors were well resolved for both the daily and the weekly time series.  The 2-year, 0.3-

year, and 5-year eigenvectors for the daily time series did not have a matching pair.  In other 

words, there was only one eigenvector used to describe each frequency.  The 0.3-year cycle for the 
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weekly time series appeared to have a strong sinusoidal signal but fell just below the confidence 

interval of the red noise spectrum (Figure 4-8).   The 2.3-week cycle contained large amounts of 

amplitude modulation through its record, which potentially could play an important role during 

reconstruction. 

 
Figure 4-9: Major eigenvectors from SSA analysis of daily and weekly δ18O time series for 
SSHCZO. Blue eigenvectors were considered statistically significant and fell above the red noise 
confidence bounds.  Grey eigenvectors were not statistically significant but considered important 
to the time series.   

4.5.3. 32-Year Reconstruction at SSHCZO 

Reconstructions of the time series were created to understand the predictive power of major 

eigenvectors.  The weekly time step was chosen for reconstruction as it balanced noise and signal, 

although other reconstruction time series could be developed.  Because results of IsoGSM 
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showed limited success when compared to SSHCZO, especially at the weekly time step, 

reconstructions were only developed for IsoRSM and SSHCZO (Figure 4-10).  Reconstructions 

of IsoRSM for 32 years and SSHCZO for four years using important frequencies did an adequate 

job describing temporal patterns of isotopes in precipitation.  Important frequencies were chosen 

based on significance and near-significance.  For IsoRSM, the 10-year, 2.75-year, 1.75-year, 1-

year, 0.8-year, and 0.5-year cycles were projected to reconstruct the weekly record.  The 

eigenvectors were selected based on analysis of IsoGSM and SSHCZO eigenspectrum to 

determine which eigenvectors were important to describe the time series.  With the 

reconstruction, the six pairs of eigenvectors accounted for 43.44% of the variability.  Substantial 

variability was missed from the 32-year record due to short-term fluctuations around the seasonal 

cycle.  Interannual variability was a strong component of the reconstructed time series.  

For SSHCZO, the 2-year, 1-year, 0.5-year, 0.3-year, 3.7-week, and 2.3-week cycles were 

combined to reconstruct the 4-year record (Figure 4-10).  The 2-year component did not have a 

matching eigenvector and constituted a trend within the record.  Eigenvectors were selected 

following similar method as above.  The SSHCZO reconstruction accounted for 51.87% of the 

variability within the record.  Overall the reconstruction was more successful at describing short-

term variability, an unsurprising fact, as high-frequency eigenvectors were used in the 

reconstruction.   
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Figure 4-10: Reconstructions of weekly amount weighted δ18O values for SSHCZO (blue) and 
IsoRSM (grey) using major eigenvectors (see text).  Upper panel shows long-term reconstruction 
of IsoRSM in relation to SSHCZO time series.  Lower panel shows agreement between 
SSHCZO and IsoRSM reconstructions.  SSHCZO reconstruction accounts for 51.78% of the 
variability of the original time series while IsoRSM reconstruction accounts for 43.44% of the 
variability. 

4.6. Summary & Conclusions 

Comparisons of time series from two isotope-incorporated atmospheric general circulation 

models and observations from SSCZHO were performed to assess the efficiency of the models 

and their internal temporal structures.  Linear regressions and Nash-Sutcliffe coefficients were 

calculated for daily, weekly, and monthly amount weighted δ18O values of IsoGSM and IsoRSM 

versus SSHCZO.  Additionally, the OIPC was compared against the SSHCZO as a baseline 

test.  Singular spectrum analysis was also performed on daily, weekly, monthly amount weighted 

δ18Ο and δD values for IsoGSM and IsoRSM.  Due to record length limitations, SSA was 

performed on the daily and weekly amount weighted record of SSHCZO.  Results provided the 

following conclusions: 
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1. Overall, models through all time series under predicted the isotopic range observed at 

SSHCZO.  Time integration, moderately improved the predictive power of the models, 

yet could not completely describe the full isotopic range observed. 

2. In general, IsoRSM at the monthly time step provided the best description of isotope 

values at SSHCZO and had a Nash-Sutcliffe coefficient of 0.5792. 

3. Eigenspectrum for IsoGSM, IsoRSM, and SSHCZO at each time interval showed 

significant eigenvalues at the annual cycle and its harmonics.   

4. Time integration reduced the number of eigenvalues considered significant, suggesting 

time averaging performs a type of windowing on the eigenspectrum. 

5. Reconstructions of IsoRSM and SSHCZO are capable of explaining approximately half of 

the original time series, suggesting large portion of the time series is inherent variability.   

6. The specific IsoRSM and SSHCZO reconstruction contained different amounts of 

resolution, affecting the applicability of reconstructions. 

 

Although substantial progress has been made comparing IsoGSM and IsoRSM to 

SSHCZO observations, there remain unanswered questions.  First, additional sampling and 

measurements of isotopes in precipitation at SSHCZO is required to determine long term 

variability and low frequency oscillations in precipitation isotopes.  A record length of 5+ years 

would increase the resolution of long-term fluctuations.  Second, intercomparisons must be 

preformed at other spatial locations to fully understand the efficiency of IsoGSM and IsoRSM to 

predict the space-time dependency of precipitation isotopic compositions.  Finally, with the 

results of this work, improvements to the general circulation models can be performed to more 

successfully describe isotopes in precipitation at SSHCZO and other locations. 
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Chapter 5.  

Conclusions and Future Work 

5.1. Summary of Completed Work 

Building of previous work at SSHCZO, numerous findings were described in Chapter 2 

regarding spatiotemporal patterns of soil water isotopes within the catchment.  Most 

dramatically, soil water isotopes were found to vary seasonally similar to precipitation especially in 

the shallow layers.  Soil water isotope profiles showed strong attenuation of this seasonal variation 

of isotopic compositions with depth, suggesting the importance of hydrodynamic mixing of 

precipitation from multiple seasons.  Additionally, isotopic composition profiles provided unique 

insight to preferential flow patterns and snow melt dynamics.  Large increases in standard 

deviations along soil horizon and soil-bedrock interfaces during the winter months suggested 

lateral preferential flow occurred regularly within the catchment.  Relatively smooth isotopic 

composition profiles through the first meter, during the summer months, suggested little lateral 

preferential flow, and occurrences of vertical preferential flow bypassing the upper soil layers.  

Comparison of north and south slopes showed variable snowmelt dynamics in the catchment, 

with snow more readily melting and infiltrating the upper soil layers on the north slope, and snow 

sublimating and enriching on the south slope prior to infiltration.  Finally, investigation of 

summer soil water isotope compositions showed little evaporation trends suggesting the mobile 

domain of the soil profile does not experience substantial evaporation.  This finding must be 

taken carefully as a major limitation of the study is the inability of the suction cup lysimeters to 

fully sample the soil matrix, leaving behind tightly held water.  

A more detailed analysis of the isotopic composition of precipitation at SSHCZO (Chapter 

3) led to a better understanding of the isotopic input to the catchment.  Using event based 

precipitation data from 2009-2012, univariate and bivariate kernel density estimates were 

constructed to understand the probability density distributions, and results showed precipitation 

compositions were skewed towards more depleted values.  Unweighted and precipitation amount 

weighted kernel density estimates were also constructed to understand the influence of 

precipitation amount on distributions.  Inclusion of precipitation amounts to KDEs decreased the 

peak densities and shifted the distributions slightly towards more depleted values.  Time 
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integration to daily, weekly, monthly, and seasonally amount weighted time series reduced the 

variability within the record yet preserved the seasonal variability, with more depleted values in 

the cold season and less depleted values in the warm season.  Snow in the cold months and 

tropical storms in the early fall appeared to control this seasonal variability.  Construction of the 

local meteoric water line using event, daily, weekly, monthly, and seasonally amount weighted 

time series demonstrated the variability in slope and intercept.  Closer investigation showed the 

local meteoric water line defined using high-resolution sampling contained a bias due to low d-

excess and low amount events.  The local meteoric water line defined using precipitation amount 

weighted least squares regression provided the most valuable local meteoric water line for future 

hydrological investigations. 

The first step in development of a spatially and temporally distributed data layer for isotope 

compositions in precipitation was carried out through the time series analysis of isotope 

incorporated atmospheric general circulation models and SSHCZO (Chapter 4).  Specifically, 

regressions of daily, weekly, and monthly amount weighted time series were performed on a 

global spectrum model and its downscaled regional spectrum model to compare how each model 

performed versus the observations at SSHCZO.  Overall, each model underpredicted the isotopic 

range observed at SSHCZO.  IsoRSM was found to be the best performing model based on a 

Nash-Sutcliffe coefficient of 0.5792.  Singular spectrum analysis was preformed on each amount 

weighted time series to determine the temporal structure of each record and showed the 

importance of the annual cycle and its harmonics.  Time integration reduced the number of 

eigenvalues considered significant suggesting time integration performs a type of windowing on 

the eigenspectrum.  Reconstructions of the weekly amount weighted IsoRSM and SSHCZO 

records accounted for approximately 50% of the variability, suggesting both records contain 

substantial innate noise.  

5.2. Potential Future Work 

5.2.1. Continued Isotope Hydrology Studies at SSHCZO 

Detailed investigations of spatiotemporal patterns of soil water and precipitation isotope 

compositions have furthered the understanding of hydrologic process at SSHCZO, yet there 

remains unfinished work to more fully appreciate processes such as tree source water dynamics, 
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the role of immobile soil water, deep groundwater storage and flows, and long term trends in 

precipitation isotope compositions.  Ongoing work is attempting to synthesize isotope hydrology 

with previous conceptual hydrologic models of SSHCZO to understand how various hydrologic 

pools interact at different periods of time.  Further, knowledge gained through these isotope 

hydrology studies will be used in conjunction with other water chemistry data to understand flow 

paths, hydrologic timescales, and deep groundwater dynamics.  

5.2.2. Spatial Validation of Results from Downscaled Atmospheric GCM 

Based on the relatively promising results of the comparison between IsoRSM and 

SSHCZO, a fully distributed data product with isotopes in precipitation for the Chesapeake Bay 

watershed has been developed, yet remains unverified at other spatial locations.  As a raw data 

product, the data layer adequately predicts isotopic composition of precipitation at 10 km 

resolution and hourly time steps.  Further work is required to more robustly understand the 

temporal variability of the modeled isotopic compositions.  One procedure, which would be 

beneficial for this understanding, would be a detailed analysis of one or more major 

meteorological events at a specific location.  This would provide insight to the accuracy of 

modeled precipitation isotopic compositions during important hydrologic events.  Detailed 

investigation of a typical event would also shed light on the processes, which contribute to the 

long-term hydrological state of a watershed.   

Cross comparison of IsoRSM at other locations in the Chesapeake Bay watershed would 

further validate its predicted isotopic composition of precipitation.  Observations from sites in the 

IAEA’s Global Network of Isotopes in Precipitation (GNIP) or the National Atmospheric 

Deposition Program (NADP) are an ideal candidate for further validation.  Typically these sites 

have multi-year records of weekly or monthly bulk precipitation samples, which could be used 

following the linear regression or singular spectrum procedures outlined in Chapter 4.  Results 

would then determine if IsoRSM provides a better estimate of isotopes in precipitation than the 

Online Isotopes in Precipitation Calculator, the current standard for estimating isotopes in 

precipitation for ungagged basins.    
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5.2.3. Distributed Isotopic Age Modeling of Chesapeake Bay watershed 

A promising application of the IsoRSM derived data product is the distributed isotopic age 

modeling of waters in the Chesapeake Bay watershed using the Penn State Integrated Hydrologic 

Model (PIHM).  Building off the work of Bhatt (2012), it is now possible to model the isotopic 

age dynamics through space and time over large regions using realistic isotopic forcing.  Findings 

from distributed age modeling potentially could inform managers, policy makers, and the public 

of hydrologic process timescales, which often can be difficult to determine or conceptualize.  

Before application of the IsoRSM derived data product, it would be important to validate the 

spatiotemporal dynamics of precipitation isotopic compositions as well as develop a strategy for 

implementation.  One major challenge is the know errors associated with GCM modeled 

precipitation amounts.  A robust data management technique must be developed to successfully 

and accurately apply the data product to a large-scale hydrologic model. 
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  Appendix A

Data Management: Comparison between LPM and Ott Instruments 

1. Motivation 
The SSHCZO is a highly instrument experimental catchment interested in a large variety of 

environmental processes.  Many of these environmental investigations utilized observed 

precipitation values to understand processes such as storm flow generation, soil moisture 

dynamics, or chemical weathering rates.  Even though the catchment is relatively small and does 

not contain any large elevation gradients, it is still beneficial to monitor precipitation using a 

variety of techniques.  In this study, an Ott Pluvio weighing bucket was compared against a Laser 

Precipitation Monitor (LPM) to establish if any significant differences exist and if so which 

instrument should be utilized for further investigations.  Deciphering which instrument better 

observes the precipitating amounts is a challenging task as precipitation measurements are 

inherently stochastic.  It is well known that precipitation measurements are influenced by a 

variety of factors including wind, precipitation type, air temperature, and vegetation cover.  Both 

the Ott and the LPM have advantages over the other with respect to measurement errors.  It 

should also be noted that multiple instruments are advantageous because of redundancy and that 

in the event of single instrument failure, the second instrument is capable of recording the 

environmental variable of interest.   

2. Methods 

2.1 Instruments 

Both the Ott Pluvio (hereafter Ott) and LPM were installed in a ridge top clearing at the 

SSHCZO in central Pennsylvania.  The clearing measured approximately 10 m in diameter and 

was vegetated by short to tall grasses during the growing season.  The clearing was bordered by 

deciduous and coniferous trees, which drastically reduced the wind speeds to 0-10 m/s 

throughout the entire year.  The Ott was installed in 2006 in the center of the clearing on a level 

concrete pad while the LPM as installed in 2009 at a height of 2 m and approximately 2 m 

horizontally from the Ott.  Neither instrument was significantly affected by throughfall based on 
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these installations.  Because snow packs remained relatively low (<0.5 m) during the observation 

period, winter precipitation observations are considered to be accurate measurements. 

The Ott gage works by continually weighing the volume of water collected within the 

stainless steel bucket.  Incremental changes within the bucket are measured by an electronic 

weighting cell and record as an amount of precipitation every ten minutes.  Precipitation 

intensities are also determined for each ten-minute increment.  Stainless steel fans are installed 

around the perimeter of the Ott to reduce the affects of strong winds on the collection efficiency. 

Raw data from the Ott instrument is streamed live to the SSHCZO website 

(http://criticalzone.org/shale-hills).  Lags between data collection in the field and uploading to 

SSHCZO website occur occasionally due to network lags and power outages.  After outage, data 

is typically restored online.  Streaming raw data is considered Level 0 according to National CZO 

guidelines.  This means data is not checked for gaps, errors, or processed. Analysis of 

precipitation was performed on the raw ten-minute precipitation amounts only.   

The Laser Precipitation Monitor (LPM) records precipitation amounts, intensities, size, and 

type using a beam of lasers.  As precipitation droplets fall through the LPMs sensors the 

instrument determines the type of precipitation using the ambient temperature, size of 

precipitation droplet, and droplet velocity.  Precipitation measurements are reported similarly as 

the Ott instrument. 

2.2 Data manipulation to compare similar measurements 

Raw data from the LPM and Ott was adjusted to allow for equal comparisons.  Raw time 

stamps and precipitation amounts were run through Matlab file, which adjusted the records so 

comparisons could be made for various time integration periods.  Before comparison could be 

preformed, full-length time series were constructed from using the first and last observations.  

The time step for the full time series was ten-minutes.  The ten-minute LPM data was 

constructed from the daily record.  Values for a given time step were found by finding the 

difference between the given time step and the time step prior, unless the time step fell at the first 

measurement of a given day.  This procedure was not carried out for the Ott measurements, as 

they were reported as amounts per ten-minutes.   

Clear erroneous observations were removed before analysis.  The threshold for this value was 

subjective and chosen as measurements >75mm during a given ten-minute sampling.  Values 
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above the threshold were replaced with NaN (not a number) values in Matlab.  Gaps were filled 

with NaN values.  Measurements made by one instrument while the other instrument did not 

record were not considered in the regressions below. 

2.3 Comparison over different integration periods 

Comparison of LPM and Ott was performed for four distinct integration periods, ten-

minute, hourly, six-hour, and 24-hour to account for short collection and small amount 

variability.  Investigation of sample collection amounts over a range of time periods allows for 

determination of biases either due to short or long collection periods.  Further, integrating over 

longer periods is assumed to average micro-climatic variations with respect to each instruments 

location.  For instance, slight variations in wind speed or wind directions, which would cause 

differences, in short term measurements, would be averaged out over longer integration periods.  

Additionally, comparisons over four periods allow for detailed understanding of process 

timescales and provides us with regressions based on each integration period.   

The ten-minute integration period is the smallest value, which could be compared.  This is 

considered pseudo-raw data as the LPM data had to be manipulated in order to compare against 

the raw Ott data.  Hourly samples were calculated by summing the six measurements made 

during a given hour.  If any of the six observations were missing during the hour period, the value 

was considered NaN.  Six hour and 24-hour values were handled similar to hourly values.   

2.4 Handling Outliers 

To determine linear regressions for each time interval computation were only performed on 

high-quality data.  Determination of high-quality data was a somewhat subjective process and 

consisted of two parts: comparison of measurements >0 mm and removal of outliers.  Since both 

the LPM and Ott were co-located in the ridge top clearing of SSHCZO, it was expected that 

both instruments would report the same precipitation amounts for each measurement period 

resulting in a one-to-one regression of the two instruments.  To account for periods of poor 

quality measurements, regardless of reason, time steps where either instrument recorded 0 mm of 

precipitation were removed from analysis.  Additionally a subjective procedure for outlier 

selection was determined by finding the absolute difference between the LPM and Ott 
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measurements during a given time step.  Absolute differences were 10 mm, 15 mm, 15 mm, and 

50 mm for ten minute, hourly, six hour, and 24-hour integration periods respectively. 

 

Table A-1: Summary of Ott and LPM comparison. 

  Integration Period 
  10-Minute 1-Hour 6-Hour 24-Hour 

Number of LPM Measurements 158,677 26,424 4,404 1,101 
Number of Ott Measurements 147,206 26,424 4,404 1,101 

Full Record 
Slope 0.6052 0.7868 0.8591 0.8070 

Intercept 0.1607 0.2664 0.3966 0.9538 
R2 0.7974 0.9532 0.9479 0.9167 

Number of Outliers 5 3 4 3 
Number of Zeros 140,162 24,390 3,706 728 

Outliers 
Removed 

Slope 0.7022 0.8768 0.9552 0.9260 
Intercept 0.1267 0.1572 0.1157 0.1891 

R2 0.8186 0.9651 0.9810 0.9716 
Log-Log 

Regression 
Slope 0.5848 0.8506 0.9209 0.8959 

Intercept -0.4350 -0.0308 -0.0102 0.0321 
 

3. Results and Discussion 
 

Time series of each integration period (10-minute, 1-hour, 6-hour, 24-hour) showed general 

agreement between the two instruments.  While difficult to determine, both instruments 

captured the high intensity events in the 10-minute record and captured the relatively uniform 

precipitation amounts associated with the 24-hour time series.  Major gaps were discovered in the 

Ott instrument during the summer and fall of 2010 as well as the winter of 2011.  The cause of 

this erroneous data is unclear, as the instrument was reporting zero precipitation during the entire 

period.  Clearly this data is faulty, as was thrown out for the later regressions.  
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Appendix Figure 1: Time series of Ott and LPM instruments for 10-minute, 1-hour, 6-hour, and 
24-hour precipitation totals.  Colored bars at the top of each panel correspond to gaps within the 
record.  Grey region of each panel corresponds to known errors in Ott record. 

 

Regressions were performed using observations for time steps where both instruments record 

precipitation greater than zero.  Each instrument had relatively similar precipitation amounts for 

each time interval.  The best agreement occurred for the 1-hour, 6-hour, and 24-hour intervals.  

Over each time interval there appears to be a slight bias between the instruments where the LPM 

typically predicts larger precipitation amounts when compared to the Ott.  Even with removal of 

the outliers, the bias appears to remain.  Integration to 6-hour and 24-hour reduced the 

magnitude of the bias but could not remove it completely. 
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Appendix Figure 2: Linear regressions of Ott and LPM instruments for 10-minute, 1-hour, 6-
hour and 24-hour integration periods.  The black line is the one-to-one line. 

 

Log-log regressions better display the comparison of low precipitation amounts for both the 

Ott and the LPM.  It is clear from this comparison that as precipitation amounts get smaller the 

agreement between the two instruments decreases.  This is mostly due to the differing resolution 

of the two instruments.  Because the Ott only measures precipitation amounts to 0.1 mm and the 

LPM measures precipitation amounts to the 0.01 mm, the correlation between the two decreases.  

In hydrological applications this typically is not as important since these small events do not 

dominate the hydrologic response of the catchment. 
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Appendix Figure 3: Log-log plots of Ott versus LPM for 10-minute, 1-hour, 6-hour, and 24-
hour precipitation totals.  Black line represents the one to one line. 

 

4. Conclusion 
Based on the comparison of 10-minute, 1-hour, 6-hour, and 24-hour precipitation amounts 

from the Ott and the LPM instruments at SSHCZO, the optimal record to use is the Ott.  The 

Ott record provided relatively conservative estimates of precipitation amounts for the catchment.  

Gaps in the Ott record should be filled using the appropriate LPM regression.  
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  Appendix B

Data Management: SSHCZO Stream Flow 

Stream discharge data was processed using Matlab following rating curve developed by 

Nutter (1964).  Stream water depth (in meters) was measured behind the double V-notch weir in 

one minute intervals using the Real-Time Hydrologic Network (RTHnet) and streamed online 

to the SSHCZO website.  Discharge values were processed in bulk at the end of each calendar 

year or as needed.  Raw timestamp, water depth, and water temperature RTHnet data were 

imported to Matlab.  Gaps within the one-minute record were filled with NaN values.  Values 

greater than 4 m or 0.1 m less than the 6-hour moving average were considered erroneous and 

replaced with NaN values.  Water temperatures above 50 °C or below -10°C were replaced with 

NaN values.  The one-minute time series was then averaged to ten-minute values.  Time 

intervals, which contained NaN values, were considered NaN in the ten-minute time series.  The 

depth of above weir notch was calculated be subtracting 0.568 m from ten-minute averaged 

depths.  This value was determined through a comparison of manual staff gage measurements and 

RTHnet depth measurements.   

Water depths were then converted from meters to feet and processed through stage-

discharge relationship developed by Nutter (1964) to produce discharge in cubic feet per second.  

Gaps in ten-minute discharge record were then flagged.  Gaps less than 24 hours were filled 

using linear interpolation of the record and flagged as “Fitting (F).”  Gaps greater than 24 hours 

were filled with model data provided by PIHM and flagged as “Model (M).”  Observations 

recorded when ten minute average water temperatures were greater than or equal to 0 °C were 

flagged as “High Quality Observations (H),” while observations record when ten minute average 

water temperatures were less than 0 °C were flagged as “Low Quality Observations (L).”  This 

was intended to identify periods when ice or frozen instrumentation could produce faulty 

measurements.  Discharge values were then converted to cubic meters per day.  StreamFlow.m 

processes raw water depth values to discharge values while providing visualization tools to ensure 

proper discharge calculations. 

 



103 

  Appendix C

Local Meteoric Water Line Regression Procedures 

The slope, intercept, and corresponding standard deviations of local meteoric water lines 

were calculated following an ordinary least squares regression procedure (IAEA, 1992) and a 

precipitation amount weighted least squares regression procedure (Hughes and Crawford, 2012). 

The slope of the ordinary least square regression was calculated using the following equation: 
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The intercept was calculated using the following equation: 

   ! =   
!
!
−!

!
!
   (2)  

The standard deviation of the slope (m) and intercept (b) were calculated using the following 
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where Sy,x is the standard error of the estimate: 
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The slope (m) and intercept (b) of the precipitation amount weighted least squares 

regression were calculated using the following equations: 
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where p is the precipitation amount (mm) for a given sample.  The standard deviation of the 

slope (m) and intercept (b) for the weighted regression were calculated using the following 

equations: 
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where Sy,x is the weighted standard error of the estimate: 
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